
9.520: Statistical Learning Theory and Applications February 16th, 2010

Regularized Least Squares
Lecturer: Charlie Frogner Scribe: Shay Maymon

1 Introduction
Tikhonov regularization which was introduced last time is stated as the minimization of the following
objective function with respect to f ∈ H

n∑
i=1

V (yi, f(xi)) + λ‖f‖2H. (1)

{(xi, yi)}ni=1 are the given data points, V (·) represents the loss function indicating the penalty we
pay for predicting f(xi) when the true value is yi, and ‖f‖2H is a Hilbert space norm regularization
term with a regularization parameter λ which controls the stability of the solution and trades-off
regression accuracy for a function with small norm in RKHS H.

Denote by S the training set {(x1, y1), . . . , (xn, yn)} where each xi is a d-dim column vector. We
let X refer to the n by d matrix whose ith row is xTi and Y = [y1, y2, . . . , yn]T refer to a column
vector of labels. We assume a positive semidefinite kernel function k, which generalizes the notion
of dot product in a Reproducing Kernel Hilbert Space (RKHS). Commonly used kernels include:

Linear : k(xi, xj) = xTi xj

Polynomial : k(xi, xj) = (xTi xj + 1)d

Gaussian : k(xi, xj) = exp
(
−||xi − xj ||

2

σ2

)
.

We define the kernel matrix K such that Kij = k(xi, xj). Abusing notation, we allow the kernel
function to take multiple data points and produce a matrix, i.e. k(X,X) = K, and given an arbitrary
point x, k(X,x) is a column vector whose ith entry is k(xi, x).

According to the representer theorem, the optimal function fs which minimizes (1) has to be of
the form

fλs (x) =
n∑
i=1

cik(xi, x) (2)

for some ci ∈ R, where k represents the positive semidefinite reproducing kernel function associated
with H. This result is easily shown by decomposing an arbitrary function f ∈ H into

f = fs + f⊥s (3)

where fs =
∑n
i=1 αik(xi, ·) and f⊥s belongs to the space orthogonal to that spanned by k(xi, ·). The

first term of the objective function which corresponds to the loss function does not depend on f⊥s .
This is shown by using the reproducing property, i.e. f(x) = 〈f, k(x, ·)〉H ∀f ∈ H, and the fact that
f⊥s is in the space orthogonal to that spanned by {k(xi, ·)}, i.e.

f(xi) = 〈f, k(xi, ·)〉H
=

〈
fs + f⊥s , k(xi, ·)

〉
H

= 〈fs, k(xi, ·)〉H +
〈
f⊥s , k(xi, ·)

〉
H = fs(xi). (4)

4-1

Furthermore, using the fact that fs ⊥ f⊥s , the regularization term reduces to

‖f‖2H = 〈f, f〉H = ‖fs‖2H + ‖f⊥s ‖2H. (5)

Thus, to minimize (1) we set ‖f⊥s ‖2H to zero so f⊥s = 0 and f ∈ span{k(xi, ·)}.
A very useful algorithm and simple to derive is Regularized Least Squares (RLS) in which the

square loss V (yi, f(xi)) = (yi − f(xi))
2 is used and the Tikhonov minimization boils down to solving

a linear system. We will first show the derivation of the RLS algorithm and then discuss how to
find good values for the regularization parameter λ. We will show an efficient way for solving the
RLS problem for different values of λ which would be as cheap as solving the minimization problem
once. We will also discuss about ways to check how good the function is for a specific value of λ.

2 Solving RLS for a Single Value of λ

RLS is a Tikhonov regularization with a square loss function, i.e.

arg min
f∈H

1
2

n∑
i=1

(f(xi)− yi)2 +
λ

2
||f ||2H. (6)

For simplicity of derivation we are minimizing the total loss rather than the average loss as in
Tikhonov regularization. The factor 1/n on the loss can be folded into the regularization factor λ.
Also, the multiplication by a factor of 1

2 is for simplicity and will obviously not change the minimizer.
The square loss makes more sense for regression than for classification, however, as we will see later
it works great also for classification.

Using the representer theorem, we can write the solution to (6) as

f(·) =
n∑
j=1

cjk(·, xj) (7)

for some cj ∈ R. Specifically, f(xi) can be represented as

f(xi) =
n∑
j=1

cjk(xi, xj) = (Ki,·) · c (8)

where (Ki,·) is the ith row of the kernel matrix, and c ∈ Rn is an n-dim column vector. Using (8),
the minimization in (6) can be rewritten as

arg min
c∈Rn

1
2
‖Y −K · c‖22 +

λ

2
||f ||2H. (9)

Using again the representer theorem for the regularization term, we obtain

‖f‖2H = 〈f, f〉H (10)

=

〈
n∑
i=1

cik(·, xi),
n∑
j=1

cjk(·, xj)

〉
H

(11)

=
n∑
i=1

n∑
j=1

cicj 〈k(·, xi), k(·, xj)〉H (12)

and by applying the reproducing property 〈f, k(·, xj)〉H = f(xj) to k(·, xi) ∈ H, we obtain

‖f‖2H =
n∑
i=1

n∑
j=1

cicjk(xi, xj) = cTKc. (13)

4-2

Note that (13) is specifically true for the minimizer of the Tikhonov functional and not for all f ∈ H.
Substituting (13) into (9), we obtain

arg min
c∈Rn

1
2
‖Y −Kc‖22 +

λ

2
cTKc (14)

which is a convex function of c since K is a positive semidefinite matrix. The solution can be
obtained by setting the derivative with respect to c to zero, i.e.

∂

∂c

{
1
2

(Y −Kc)T (Y −Kc) +
λ

2
cTKc

}
= −(Y −Kc)TK + λcTK =

= ((K + λI) c− Y)T K = 0T . (15)

Since K is positive semidefinite, K + λI is positive definite for all λ > 0 and therefore the optimal
solution is

c = G−1(λ)Y (16)

where G(λ) = (K + λI). If K is positive definite the solution to (15) is unique and given by (16).
However, other solutions to (15) exist if K is not full rank which results in the same minimizer f .
Note that we are not suggesting inverting G to obtain the solution, the use of G−1 is formal only.
To obtain a solution of c for a fixed value of the parameter λ we need to solve the following linear
system of equations

(K + λI) c = Y. (17)

Since the matrix (K + λI) is symmetric and positive definite for any positive λ, an appropriate
algorithm for solving this system of equations is Cholesky factorization which is a decomposition
of the matrix into the product of a lower triangular matrix and its conjugate transpose. When it
is applicable, the Cholesky decomposition is roughly twice as efficient as the LU decomposition for
solving systems of linear equations. Once we have c, the prediction at a new test point x∗ follows
from (8),

f(x∗) =
n∑
j=1

cjk(x∗, xj) = k(x∗, X)c. (18)

3 Solving RLS for Varying λ

Usually we don’t know a good value of λ in advance and solving the linear system for each value
of λ in (17) is computationally expensive. The question is whether there is a more efficient method
than solving c(λ) = (K + λI)−1Y afresh for each λ. We will make use of the eigendecomposition
of the symmetric positive semidefinite kernel, K = QΛQT , where Λ is diagonal with Λii ≥ 0 and
QQT = I. We then can represent G(λ) as

G(λ) = K + λI

= QΛQT + λQQT

= Q(Λ + λI)QT , (19)

which implies that G−1(λ) = Q(Λ + λI)−1QT . Since the matrix (Λ + λI) is diagonal, its inverse is
diagonal and

(
(Λ + λI)−1

)
ii

= 1
Λii+λ

are the eigenvalues of G−1(λ). We see that λ plays the role
of stabilizing the system. Without regularization term (i.e. λ = 0), small eigenvalues Λii will lead

4-3

to enormous eigenvalues of G−1. Increasing λ makes the solution more stable. However, increasing
λ too much so that λ >> Λii will result in over-smoothing since we are ignoring the data. A good
value of the regularization parameter λ can often be found between the smallest eigenvalue of K
and its largest eigenvalue. When there is no regularization or equivalently when λ is too small, two
problems occur: numerical stability which is due to the computer precision, and unstable behavior
of the solution which results in a huge variation of the solution to two similar training sets. A good
choice of λ makes the solution more generalizable.

It takes O(n3) time to solve one (dense) linear system, or to compute the eigendecomposition of
the corresponding matrix (maybe 4x worse). Solving the linear system afresh for n values of λ will
take O(n4) time. The proposed algorithm which uses the eigenvalue decomposition suggests to do
that computation in O(n3). Decomposing K is O(n3). Once we have the decomposition (Q and Λ),
we can find c(λ) for a given λ in O(n2) time by solving

c(λ) = Q(Λ + λI)−1QTY. (20)

Note that since (Λ + λI) is diagonal, multiplying its inverse by QTY is a linear time operation
(O(n)), and Q times the result is O(n2). When varying λ, only the diagonal matrix is changed and
therefore finding c(λ) for many values of λ’s is essentially free. Once we have c, we can also get the
predictions Kc in O(n2) time.

4 Validation
We have shown how to find c(λ) quickly as we vary λ. In general, we need a mechanism for finding a
good value for the regularization parameter λ. We would like a regularization parameter that makes
the solution generalizable, i.e. a value for which the corresponding solution predicts well future
examples. Since the distribution over examples is unknown, choosing the hyperparameters should
be based only on the training set. For this matter, we can use a cross-validation method in which we
train on certain amount of the data and validate on the holdout set, which was not used for training.
If instead we use for validation the training set error it might result in overfitting. There are many
other methods such as Akaike or other Bayesian methods which work good for small dimensional
problems. However, for high dimensional problems cross-validation is usually used. When we have
a huge amount of data, we could hold back some percentage of our data (30% is typical), and use
this development set to choose hyperparameters. When we have few data points, more common is
k-fold cross-validation, which one meaning of it suggests to dividing the data into k equal sets. For
each iteration i, train on the other k − 1 sets and test on the ith set. The limit of k-fold validation
is leave-one-out (LOO) cross-validation.

LOO cross-validation suggests for each data point xi to build a classifier based on the remaining
n − 1 data points, and compute the prediction error at xi. The problem with that method is that
it requires to build n different predictors on data sets of size n− 1. We will now show that for the
case of RLS, obtaining the LOO error is essentially free.

Define Si to be the data set with the ith point removed, i.e.

Si = {(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)}. (21)

The ith leave-one-out value fSi(xi) is the value of the RLS function trained on Si and applied at xi.
The corresponding ith leave-one-out error is (yi − fSi(xi)). We define LV and LE to be the vectors
of leave-one-out values and errors over the training set. 1

n‖LE‖
2
2 is considered a good empirical

proxy for the error on future points, and we often want to choose parameters by minimizing this
quantity.

We will now show that for RLS, working with LV and LE are computational effective. Define
the vector Y i as

yij =
{

yj j 6= i
fSi(xi) j = i

(22)

4-4

where all its entries are the same as of Y except its ith entry which is replaced by the unknown
value fSi(xi). If we solve RLS with labels Y i instead of Y , we will obtain fSi(·) as the optimizer.
Intuitively, when discarding the ith example, we will get fSi(·). Adding the example (xi, fSi(xi))
will add nothing to the cost. More formally, for a general f ∈ H

1
2

n∑
j=1

(yij − f(xj))2 +
λ

2
||f ||2H

≥ 1
2

∑
j 6=i

(yij − f(xj))2 +
λ

2
||f ||2H

≥ 1
2

∑
j 6=i

(yij − fSi(xj))2 +
λ

2
||fSi ||2H

=
1
2

n∑
j=1

(yij − fSi(xj))2 +
λ

2
||fSi ||2H. (23)

where in the first transition we exclude the ith data point which reduces the cost since the loss
function is non-negative. The second transition follows since fSi solves the LOO problem and since
it is optimal it has a lower cost than any other f ∈ H. The last transition follows since the ith term
that was added is zero. This proves that fSi is the optimal solution for the RLS problem using Y i
as the labels. Representing the optimizer of the RLS in terms of K, we obtain

ci = G−1Y i

fSi(xi) = (KG−1Y i)i. (24)

Note that this is circular reasoning since in order to form Y i we need to know fSi(xi). However,
since only the labeled vector Y has been changed compared to the RLS problem for the whole set
of data points, we will show how to reuse calculation and exploit the solution fS(X) = KG−1Y for
the derivation of LV and LE . Computing the difference between the predicted value of fSi at xi
and the predictor fS(xi) obtained by training on the whole set, we obtain

fSi(xi)− fS(xi) =
∑
j

(KG−1)ij(yij − yj)

= (KG−1)ii(fSi(xi)− yi) (25)

where in the second transition we used the fact that the labeled vectors are the same except of their
ith element. Rearranging, we obtain a closed form for the LOO projection

fSi(xi) =
fS(xi)− (KG−1)iiyi

1− (KG−1)ii

=
(KG−1y)i − (KG−1)iiyi

1− (KG−1)ii
. (26)

Therefore, for all data points

LV =
KG−1Y − diagm(KG−1)Y

diagv(I −KG−1)
, (27)

where the division in (27) is elementwise, diagm(M) denotes the diagonal matrix whose diagonal
elements areMii, and diagv(M) denotes a column vector whose elements areMii. The corresponding

4-5

error is

LE = Y − LV

= Y +
diagm(KG−1)Y −KG−1Y

diagv(I −KG−1)

=
Y −KG−1Y

diagv(I −KG−1)
=

(
I −KG−1

)
Y

diagv(I −KG−1)
. (28)

We can simplify the expressions for LE in a way that leads to better computational and numerical
properties by using the eigenvalue decomposition of K as follows

KG−1 = QΛQTQ(Λ + λI)−1QT

= QΛ(Λ + λI)−1QT

= Q(Λ + λI − λI)(Λ + λI)−1QT

= I − λG−1. (29)

which yields

I −KG−1 = λG−1. (30)

Substituting (30) into the expression of LE in (28) yields

LE =
λG−1Y

diagv(λG−1)

=
G−1Y

diagv(G−1)

=
c

diagv(G−1)
. (31)

where c is the solution to the RLS problem when using all data points. We already showed how
to compute c(λ) in O(n2) time given that we already computed the eigenvalue decomposition K =
QΛQT . We can also compute a single entry of G−1 in O(n) time as follows

G−1
ij = (Q(Λ + λI)−1QT)ij

=
n∑
k=1

QikQjk
Λkk + λ

, (32)

and therefore we can compute diag(G−1), and compute LE , in O(n2) time, just the same as solving
RLS once!

5 Summary
In RLS, the Tikhonov minimization problem boils down to solving a linear system (K + λI)c = Y
since

arg min
f∈H

1
2

n∑
i=1

(f(xi)− yi)2 +
λ

2
‖f‖2H = k(·, X)c. (33)

It was shown how efficient the RLS algorithm can be solved by using the eigendecomposition of
the kernel matrix: K = QΛQT . Specifically, we can cheaply compute c(λ) for a bunch of λ’s

4-6

and compute the leave-one-out error over the whole training set about as cheaply as solving for
c once, i.e. in the same time it takes to solve a single RLS problem on our data. The primary
disadvantage of nonlinear RLS is the need to work with the entire kernel matrix K. Forming the
kernel K takes O(n2d) time and O(n2) memory. An eigendecomposition of the kernel matrix K
takes O(n3) time. Usually, we run out of memory before we run out of time. The practical limit on
today’s workstations is (more-or-less) 10,000 points (using Matlab). The linear kernel offers many
advantages for computation.

4-7

