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1 Introduction
In the previous two lectures, we’ve discussed the connections of the learning problem to statistical
inference. However, unlike in traditional statistics, our primary goal with learning is to predict the
future rather than describe the data at hand. We also typically have a much smaller sample of data
in a much higher-dimensional space, so we cannot blindly choose a model and assume it will be
accurate. If the model is too highly-parameterized, it will react too strongly to the data, we will
overfit the data, and we will fail to learn the underlying phenomenon (see Figure 1 for an example of
this behavior). However, models with too few parameters may not even describe the training data
adequately, and will provide similarly bad performance.

Regularization provides us with one way to strike the appropriate balance in creating our model.
It requires a (possibly large) class of models and a method for evaluating the complexity of each
model in the class. The concept of “kernels” will provide us with a flexible, computationally feasible
method for implementing this scheme.

(a) Data set for which we wish to
learn a function

(b) Smooth function that will likely
be a good predictor of future points

(c) Function that probably does not
model the data well, but still mini-
mizes empirical error

Figure 1: Two different functions learned from a small training set.

The goal of these notes will be to introduce a particularly useful family of hypothesis spaces called
reproducing kernel Hilbert spaces (RKHS), each of which is associated with a particular kernel, and
to derive the general solution of Tikhonov regularization in RKHS, known as the representer theorem.

2 Regularization
The goal of regularization is to restore the well-posedness (specifically, making the result depend
smoothly on the data) of the empirical risk minimization (ERM) technique by effectively restricting
the hypothesis space H. One way of doing this is introduce a penalization term in our minimization
as follows:

ERR(f)︸ ︷︷ ︸
empirical error

+λ pen(f)︸ ︷︷ ︸
penalization term
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where the regularization parameter λ controls the tradeoff between the two terms. This will then
cause the minimization to seek out simpler functions, which incur less of a penalty.

Tikhonov regularization can be written in this way, as

1
n

n∑
i=1

V (f(xi), yi) + λ‖f‖2H, (1)

where

• λ > 0 is a regularization parameter,

• V (f(x), y) is the loss function, that is the price we pay when we predict f(x) in place of y, and

• ‖ · ‖H is the norm in the function space H.

This formulation is powerful, as it does not present a specific algorithm, but rather a large class
of algorithms. By choosing V and H differently, we can derive a wide variety of commonly-used
techniques, including traditional linear regression and support vector machines (SVMs).

Given our intuition about what causes overfitting, the penalization should somehow force us to
choose f to be as smooth as possible while still fitting the data. The norm from our function space
H will allow us to encode this criterion, but in order to design this norm appropriately, we need to
describe reproducing kernel Hilbert spaces.

3 Functional Analysis Background
In order to define RKHS, we will make use of several terms from functional analysis, which we
define here. Additional review on functional analysis can be found in the notes from the math camp,
available on the website.

Definition 1 A function space F is a space whose elements are functions, e.g. f : Rd → R.

Definition 2 An inner product is a function 〈·, ·〉 : F × F → R that satisfies the following
properties for every f, g ∈ F and α ∈ R:

1. Symmetric: 〈f, g〉 = 〈g, f〉

2. Linear: 〈r1f1 + r2f2, g〉 = r1〈f1, g〉+ r2〈f2, g〉

3. Positive-definite: 〈f, f〉 ≥ 0 for all f ∈ F and 〈f, f〉 = 0 iff f = 0.

Definition 3 A norm is a nonnegative function ‖ · ‖ : F → R such that for all f, g ∈ F and α ∈ R

1. ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0;

2. ‖f + g‖ ≤ ‖f‖+ ‖g‖;

3. ‖αf‖ = |α| ‖f‖.

A norm can be defined via an inner product, as ‖f‖ =
√
〈f, f〉

Note that while the dot product in Rd is an example of an inner product, an inner product is more
general than this, and requires only those properties given above. Similarly, while the Euclidean
norm is an example of a norm, we consider a wider class of norms on the function spaces we will
use.
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Definition 4 A Hilbert space is a complete, (possibly) infinite-dimensional linear space endowed
with an inner product.

A norm in H can be naturally defined from the given inner product, as ‖ · ‖ =
√
〈·, ·〉. Although

it is possible to impose a different norm so long as it satisfies the criteria given above, we will not do
this in general; our norm is assumed to be the norm derived from the inner product. Furthermore,
we always assume thatH is separable (contains a countable dense subset) so thatH has a countable
orthonormal basis.

While this tells us what a Hilbert space is, it is not intuitively clear why we need this mechanism,
or what we gain by using it. Essentially, a Hilbert space lets us apply concepts from finite-dimensional
linear algebra to infinite-dimensional spaces of functions. In particular, the fact that a Hilbert space
is complete will guarantee the convergence of certain algorithms. More importantly, the presence
of an inner product allows us to make use of orthogonality and projections, which will later become
important.

3.1 Examples of function spaces
• One function space is the space of continuous functions on the interval [a, b], denoted by C[a, b].

A norm can be established by defining

‖f‖ = max
a≤x≤b

|f(x)|

However, there is no inner product for the space that induces this norm, so it is not a Hilbert
space.

• Another example is square integrable functions on the interval [a, b], denoted by L2[a, b]. We
define the inner product as

〈f, g〉 =
∫ b

a

f(x)g(x)dx

This produces the correct norm:

‖f‖ =
∫ b

a

f2(x)dx

It can be checked that this space is complete, so it is a Hilbert space. However, there is one
problem with the functions in this space. Consider trying to evaluate the function f(x) at the
point x = k. There exists a function g in the space defined as follows:

g(x) =

{
c if x = k

f(x) otherwise

Because it differs from f only at one point, g is clearly still square-integrable, and moreover,
‖f − g‖ = 0. However, we can set the constant c (or, more generally, the value of g(x) at any
finite number of points) to an arbitrary real value. What this means is that a condition on the
integrability of the function is not strong enough to guarantee that we can use it predictively,
since prediction requires evaluating the function at a particular data value. This characteristic
is what will differentiate reproducing kernel Hilbert spaces from ordinary Hilbert spaces, as
we discuss in the next section.

4 Reproducing Kernel Hilbert Spaces
Definition 5 An evaluation functional over the Hilbert space of functions H is a linear functional
Ft : H → R that evaluates each function in the space at the point t, or

Ft[f ] = f(t) for all f ∈ H.
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Definition 6 A Hilbert space H is a reproducing kernel Hilbert space (RKHS) if the evalu-
ation functionals are bounded, i.e. if for all t there exists some M > 0 such that

|Ft[f ]| = |f(t)| ≤M‖f‖H for all f ∈ H

This condition is not trivial. For L2[a, b], we showed above that there exist functions that are square-
integrable, but which have arbitrarily large values on finite point sets. In this case, no choice of M
will give us the appropriate bound on these functions on these point sets.

While this condition might seem obscure or specific, it is actually quite general and is the weakest
possible condition that ensures us both the existence of an inner product and the ability to evaluate
each function in the space at every point in the domain. In practice, it is difficult to work with this
definition directly. We would like to establish an equivalent notion that is more useful in practice.
To do this, we will need the “reproducing kernel” from which the reproducing kernel Hilbert space
takes its name.

First, from the definition of the reproducing kernel Hilbert space, we can use the Riesz represen-
tation theorem to prove the following property.

Theorem 7 If H is a RKHS, then for each t ∈ X there exists a function Kt ∈ H (called the
representer of t) with the reproducing property

Ft[f ] = 〈Kt, f〉H = f(t) for all f ∈ H.

This allows us to represent our linear evaluation functional by taking the inner product with an
element of H. Since Kt is a function in H, by the reproducing property, for each x ∈ X we can write

Kt(x) = 〈Kt,Kx〉H.

We take this to be the definition of reproducing kernel in H.

Definition 8 The reproducing kernel (rk) of H is a function K : X ×X → R, defined by

K(t, x) := Kt(x)

In general, we have the following definition of a reproducing kernel.

Definition 9 Let X be some set, for example a subset of Rd or Rd itself. A function K : X×X → R
is a reproducing kernel if it is symmetric, i.e. K(x, y) = K(y, x), and positive definite:

n∑
i,j=1

cicjK(ti, tj) ≥ 0

for any n ∈ N and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ R.

Having this general notion of a reproducing kernel is important because it allows us to define
an RKHS in terms of its reproducing kernel, rather than attempting to derive the kernel from the
definition of the function space directly. The following theorem formally establishes the relationship
between the RKHS and a reproducing kernel.

Theorem 10 A RKHS defines a corresponding reproducing kernel. Conversely, a reproducing ker-
nel defines a unique RKHS.

Proof: To prove the first statement, we must prove that the reproducing kernel K(t, x) =
〈Kt,Kx〉H is symmetric and positive-definite.

Symmetry follows from the symmetry property of inner products:

〈Kt,Kx〉H = 〈Kx,Kt〉H.
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K is positive-definite because
n∑

i,j=1

cicjK(ti, tj) =
n∑

i,j=1

cicj〈Kti ,Ktj 〉H =
∥∥∥ n∑
j=1

cjKtj

∥∥∥2

H
≥ 0.

To prove the second statement, given K one can construct the RKHS H as the completion of the
space of functions spanned by the set {Kx|x ∈ X} with an inner product defined as follows: given
two functions f and g in span{Kx|x ∈ X}

f(x) =
s∑
i=1

αiKxi(x)

g(x) =
s′∑
i=1

βiKx′i
(x)

we define their inner product to be

〈f, g〉H =
s∑
i=1

s′∑
j=1

αiβjK(xi, x′j).

(This is only a sketch of the proof.) �
Now we have a more concrete concept of what an RKHS is and how we might create such spaces

for ourselves. If we can succeed at writing down a reproducing kernel, we know that there exists
an associated RKHS, and we need not concern ourselves with the particulars of the boundedness
criterion.

4.1 Examples of reproducing kernels
• Linear kernel

K(x, x′) = x · x′

• Gaussian kernel
K(x, x′) = e−

‖x−x′‖2

σ2 , σ > 0

• Polynomial kernel
K(x, x′) = (x · x′ + 1)d, d ∈ N

4.2 Historical remarks
RKHS were explicitly introduced in learning theory by Girosi (1997). Poggio and Girosi (1989) in-
troduced Tikhonov regularization in learning theory and worked with RKHS only implicitly, because
they dealt mainly with hypothesis spaces on unbounded domains, which we will not discuss here. Of
course, RKHS were used much earlier in approximation theory (eg Wahba, 1990...) and computer
vision (eg Bertero, Torre, Poggio, 1988...).

In general, it is quite difficult to find useful function spaces that aren’t RKHS.

5 Norms and Smoothness
We established earlier that if a space of functions can be represented as an RKHS, it has useful
properties (namely the inner product and the ability for each function to be evaluated at each
point) that allow us to use it to solve learning problems. Armed with the notion of kernels, we can
now describe specific examples of RKHS and examine how their different norms provide different
forms of regularization.
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Sobolev kernel Consider functions f : [0, 1]→ R with f(0) = f(1) = 0. The kernel

K(x, y) = Θ(y − x)(1− y)x+ Θ(x− y)(1− x)y

induces the norm
‖f‖2H =

∫
(f ′(x))2dx =

∫
ω2|F (ω)|2dω

where F (ω) = F{f}(ω) =
∫∞
−∞ f(t)e−iωt dt is the Fourier tranform of f . Such a norm is very

useful because it allows us to regularize on the basis of frequency content. In particular, the more
prominent the high-frequency components of f , the higher ‖f‖2H will be; in fact, the norm will be
infinite for any function whose frequency magnitudes do not decay faster than 1

ω . This imposes a
condition on the smoothness of the functions, since a high derivative gives rise to high frequency
components.

The (somewhat mysterious) reproducing kernel written above was designed to yield this useful
norm, and was not created arbitrarily.

Gaussian kernel It is possible to see that the Gaussian kernel yields as the norm:

‖f‖2H =
1

2πd

∫
|F (ω)|2eσ

2ω2
2 dω

which penalizes high-frequency components even more harshly.

5.1 Linear case
We illustrate how regularization controls complexity through a simple linear case. Our function
space is 1-dimensional lines through the origin with a linear kernel:

f(x) = w x and K(x, xi) ≡ xxi

giving an RKHS norm of

‖f‖2H = 〈f, f〉H = 〈Kw,Kw〉H = K(w,w) = w2

so that our measure of complexity is the slope of the line. We want to separate two classes using
lines and see how the magnitude of the slope corresponds to a measure of complexity.

A classification problem can be thought of as “harder” when the distinctions between the two
classes are less pronounced. In Figure 2, we see that the less separation there is between the x-values
of the two classes, the steeper the slope of the line that is required to model the relationship. Having
a norm that increases with slope is therefore a good choice in this case: by penalizing lines with
high slope, we only use complex solutions to problems if doing so is necessary to reduce the training
error.

6 Solving Tikhonov Regularization: The Representer Theo-
rem

6.1 Well-posedness, existence, and uniqueness
Now that we have RKHS and sensible norms to use for regularization, we can revisit Tikhonov
regularization in a more concrete setting. The algorithms (regularization networks) that we want to
study are defined by an optimization problem over RKHS,

fλS = arg min
f∈H

1
n

n∑
i=1

V (f(xi), yi) + λ‖f‖2H
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(a) Wide margin
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(b) Moderate margin
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(c) Small margin

Figure 2: Three different training sets to demonstrate that higher slopes are necessary to describe
the data as the class distinctions become finer.

where the regularization parameter λ is a positive real number, H is the RKHS as defined by the
reproducing kernel K(·, ·), and V (·, ·) is the loss function.

We have imposed stability on this problem through the use of regularization, but we still need to
check the other two criteria of well-posedness. Does there always exist a solution to the minimization,
and is that solution unique? As it turns out, this requires a condition on the loss function. If the
positive loss function V (·, ·) is convex with respect to its first entry, the functional

Φ[f ] =
1
n

n∑
i=1

V (f(xi), yi) + λ‖f‖2H

is strictly convex and coercive (meaning that it grows quickly at the extremes of the space),
hence it has exactly one local (and therefore global) minimum.

Both the squared loss and the hinge loss are convex (see Figure 3). On the contrary the 0-1 loss

V = Θ(−f(x)y),

where Θ(·) is the Heaviside step function, is not convex.
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(a) Square loss
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(b) Hinge loss

Figure 3: Two examples of convex loss functions.

6.2 The representer theorem
There is one additional issue to resolve. Because H is a function space, we note that it may be
infinite-dimensional. While this is not a problem in theory, it does pose a computational problem:
how can we represent a function with an infinite number of parameters on a computer with a finite
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amount of storage? Our solution to Tikhonov regularization could in principle be impossible to write
down for this reason, but it is a surprising result that it actually has a very compact representation,
as described in the following theorem.

Theorem 11 (The Representer Theorem) The minimizer over the RKHS H, fλS , of the regu-
larized empirical functional

IS [f ] + λ‖f‖2H,

can be represented by the expression

fλS (x) =
n∑
i=1

ciK(xi, x),

for some n-tuple (c1, . . . , cn) ∈ Rn. Hence, minimizing over the (possibly infinite-dimensional)
Hilbert space boils down to minimizing over Rn.

There are only a finite number n of training set points, so the fact that the minimizer can be
written as a linear combination of kernel terms from these points guarantees that we can represent
the minimizer as a vector in Rn.

We provide a sketch of the proof for this theorem.
Proof: Define the linear subspace of H,

H0 = {f ∈ H | f =
n∑
i=1

αiKxi}.

This is the space spanned by the representers of the training set. Let H⊥0 be the linear subspace of
H orthogonal to H0, i.e.

H⊥0 = {g ∈ H | 〈g, f〉 = 0 for all f ∈ H0}.

H0 is finite-dimensional, hence closed, so we can write H = H0 ⊕ H⊥0 . Now we see that every
f ∈ H can be uniquely decomposed into a component along H0, denoted by f0, and a component
perpendicular to H0, given by f⊥0 :

f = f0 + f⊥0 .

By orthogonality
‖f0 + f⊥0 ‖2 = ‖f0‖2 + ‖f⊥0 ‖2

and by the reproducing property
IS [f0 + f⊥0 ] = IS [f0],

since evaluating f(xi) = f0(xi) + f⊥0 (xi) to compute the empirical error requires taking the inner
product with the representer Kxi , and doing so nullifies the f⊥0 term while preserving the f0 term
intact.

Combining these two facts, we see that

IS [f0 + f⊥0 ] + λ‖f0 + f⊥0 ‖2H = IS [f0] + λ‖f0‖2H + λ‖f⊥0 ‖2H ≥ IS [f0] + λ‖f0‖2H

Hence the minimum fλS = f0 must belong to the linear space H0. �
This mechanism for implementing Tikhonov regularization can be applied to regularized least-

squares regression and support vector machines, as we will do in the next two classes.
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