
9.520 Problem Set 1

Due March 15, 2010

Note: there are six problems total in this set.

Problem 1 A common way to think of a RKHS is by looking at the kernel as an inner product in some
feature space where the data are mapped (see for example [1, 2]). More precisely, a feature map
is a (vector valued) map

Φ : X → F

that maps the data X into some possibly infinite dimensional feature space F endowed with an
inner product 〈·, ·〉F . A feature map can be related to a RKHS H by the condition

〈Φ(x),Φ(s)〉F = K(x, s)

and the function in the RKHS can be seen as a hyperplane in F . That is to say,

f(x) = 〈w,Φ(x)〉F

for some w ∈ F . In this exercise you are asked to derive a canonical example of feature map using
Mercer Theorem that we describe below.

A well known result due to Mercer says that if a (symmetric, positive definite) kernel is continuous
and the domain X is compact, then the integral operator

LKf(x) =
∫

X
K(x, x′)f(x′)p(x′)dx′

acting on the space L2(X, p(x)dx) of square integrable functions, is compact, self-adjoint and
positive. We indicate the (ordered) eigenvalues with σ1 ≥ σ2 ≥ . . . σD, and the eigenfunctions
with (ψj)D

j=1, where D can be infinite. In this case the functions ψ define an orthonormal basis
in L2(X, p(x)dx) and the kernel can be expanded in the following way

K(x, x′) =
D∑

j=1

σjψj(x)ψj(x′).

(a) Give an example of a feature map using the above results.

(b) What is the associated feature space if the operator has finite range (finite number of eigen-
functions)?

(c) Given the map in (a), show that a function in H can be written as a hyperplane in F .

(d) Show that the square of w for the corresponding hyperplane is simply the square of the norm
of the function in the RKHS, and write it explicitly.

Problem 2 The distance between two elements Φ(x),Φ(s) of a feature space induced by some kernel K can
be seen as a new distance d(x, x′) in the input space. Show that such a distance can always be
calculated without knowing the explicit form of the feature map itself.
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Problem 3 You are given a dataset of x, y pairs {(xi, yi)}Ni=1, with xi ∈ X and yi ∈ {−1, 1}. Assume that
n+, n− of the xi have label +1,−1, respectively (so n+ + n− = N), and let’s also assume that we
are given a kernel K and an associated feature map Φ : X → F satisfying

K(x, x′) = 〈Φ(x),Φ(x′)〉F .

Derive a classification rule, involving only kernel products (and the sign function), that assigns to
a new test point the label of the class whose mean is closest in the feature space.

Problem 4 In (binary) classification problems one aims at finding a classification rule (also called the “decision
rule”) which is a binary valued function on the input space c : X → {1,−1}. The quality of a
classification rule can be naturally measured by means of the so called misclassification error
defined by

R(c) = P{c(x) 6= y}.

If we introduce the misclassification loss `(c(x), y) = θ(−yc(x)), where θ(s) = 1 if s > 0 and
θ(s) = 0 otherwise, the misclassification error can be rewritten as

R(c) =
∫

X×Y
θ(−yc(x))p(x)p(y|x)dxdy.

Direct minimization of the misclassification error is not computationally feasible mostly because
the misclassification loss is not convex. In practice, one usually looks for real valued (rather than
binary valued) functions f : X → R and replaces θ(−yc(x)) with some convex loss `(−yf(x)).
A classification rule is then obtained by taking the sign, that is c(x) = sign(f(x)). Commonly
chosen loss functions are the hinge loss and square loss (see class). Note that in this case the error
is measured by the expected error

E(f) =
∫

X×Y
`(−yf(x))p(x)p(y|x)dxdy.

However, there is still the problem of relating the convex approximation to the original classifica-
tion problem.

With the above discussion in mind, answer the following questions:

(a) The minimizer of R(c) over all possible decision rules is the so called Bayes decision rule
b : X → {1,−1}. Find the explicit form of b.
(hint: Consider R(c|x) =

∫
Y θ(−yc(x))p(y|x)dy and calculate b(x) point-wise.)

(b) Calculate the explicit form of the minimizer of E(f) if ` is the hinge loss. (hint: use a trick
similar to the previous hint) How is it related to Bayes decision rule?

(c) Check that the square loss can be written as `(−yf(x)). Calculate the explicit form of the
minimizer of E(f) if ` is the square loss. How is it related to Bayes decision rule?

Problem 5 In class, we discussed RLS and the SVM, Tikhonov regularization algorithms derived by choosing
the square-loss, V (f(x), y) = (y − f(x))2, and the hinge-loss, V (f(x), y) = (1 − yf(x))+, respec-
tively. For classification, does one of these losses make more sense than the other? Why? Try to
draw (or plot) some simple data sets (in 2 or even 1 dimensions) in which one loss function or the
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other ”does the wrong thing.” In general, do you think the optimal setting for λ will be the same
for each algorithm? Why or why not?

Note: This problem is admittedly a bit open-ended. There is not necessarily a right or wrong
answer. We are just interested in seeing what ideas you might have. Please limit your work on
this problem to one page total.

Problem 6 Matlab exercise.

In this excercise you will implement and use regularized least squares on an artificial classification
problem. You will do the following:

• Implement RLS using the linear and polynomial kernels. You should write three functions:

– rlsTrain(Ytrain,Xtrain,whichKernel,lambda) takes four inputs
∗ Ytrain the training labels;
∗ Xtrain the training inputs;
∗ whichKernel the kernel to use, e.g. ’linear’;
∗ lambda the regularization parameter

and returns one output
∗ coeffs the optimal RLS coefficients

– rlsPredict(Xtest,Xtrain,coeffs,whichKernel) takes four inputs
∗ Xtest the test inputs;
∗ Xtrain the training inputs;
∗ coeffs the coefficients to use;
∗ whichKernel the kernel to use, e.g. ’linear’

and returns one output
∗ Ytest the predicted values at the test inputs

– rlsLOO(Ytrain,Ktrain,lambdas) implements the efficient leave-one-out method we de-
rived in class. It takes three inputs
∗ Ytrain the training labels;
∗ Ktrain the kernel matrix on the training set;
∗ lambdas a vector of values for the regularization parameter λ

and returns one output
∗ looe a vector of leave-one-out errors on the training set – errors for the RLS solutions,

that is – one for each value of λ in lambdas

• (You might want to write a helper function to construct the kernel matrix, too.)

• Download the two moons data set from the course page. It contains a training set x,y and
a test set xt, yt each one containing 200 samples. The inputs in x and xt should have
two-dimensions. Plot them and verify that the dataset lives up to its name.

• Use RLS to train a linear classifier on the training set, choosing the regularization parameter
λ to minimize the leave-one-out error. (A tip: a reasonable value for λ might range up to
the maximum eigenvalue of the kernel matrix.)

• Do the same thing with a polynomial kernel, using at least 3 different polynomial degrees.
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• Compare the obtained classifiers by testing them on the test set and plotting the obtained
decision boundaries.

Please include the following in your writeup.

• All of the code you wrote.

• Figures showing:

– The training set error and leave-one-out error vs. λ for each of the kernels you tried.
Plot both kinds of error on the same figure (one figure for each kernel).

– The decision boundaries overlaid on the training set points (plotted in two dimensions),
for each of the kernels you tried.

• A table giving the training and test error and best λ for each kernel you tried. Report the
error in terms of the true positive rate: percentage of test points correctly classified.
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