
9.520 Problem Set 2

Due Wednesday, April 14, 2010

Note: there are six problems total in this set.

Problem 1 One common preprocessing in machine learning is to center the data. In this problem we
will see how this can be related to working with an (unpenalized) off-set term in the solution.
Consider the usual Tikhonov regularization with a linear kernel, but assume that there is an
unpenalized offset term b,

min
w∈Rd, b∈R

{
1
n

n∑
i=1

(
〈w, xi〉+ b− yi

)2 + λ‖w‖2
}

and let (w∗, b∗) be the solution of the above problem.

For i = 1, . . . , n, denote by xci = xi − x̄, yci = yi − ȳ the centered data, where ȳ, x̄ are the
output and input means respectively. Show that w∗ also solves

min
w∈Rd

{
1
n

n∑
i=1

(
〈w, xci 〉 − yci )2 + λ‖w‖2

}
,

and determine b∗.

Problem 2 In classification problems where the data are unbalanced (there are many more examples of
one class than of the other one) a common strategy to obtain effective solution is weighting
the loss function so that the errors in one class are counted more than errors in the other
class. In the case of RLS this corresponds to solving the following problem

min
w∈Rd

{
n∑
i=1

γi
(
〈w, xi〉 − yi

)2 + λ‖w‖2
}

where
∑n

i=1 γi = 1 and γi > 0 for all i = 1, . . . , n.

(a) Derive the explicit form of the minimizer w∗ of the above problem.

(b) Consider the case where we have a weighted loss function and we also an offset,

min
w∈Rd, b∈R

{
n∑
i=1

γi
(
〈w, xi〉+ b− yi

)2 + λ‖w‖2
}

where
∑n

i=1 γi = 1 and γi > 0 for all i = 1, . . . , n. Using previous results, derive the
explicit form of the minimizers w∗, b∗ of the above problem.

(c) What do you think could be a good (optimal) way to choose the weights?
Note that this last question is admittedly a bit open-ended. There is not necessarily a
right or wrong answer. We are just interested in seeing what ideas you might have.

Problem 3 Consider a bounded loss function V : R × R → (0,M ] and a hypothesis space comprised of
N distinct functions, H = {f1, . . . , fN}.
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(a) Prove that for all ε > 0, the following bound holds

Pr
(

sup
f∈H

∣∣IS [f ]− I[f ]
∣∣ ≥ ε) ≤ CNM2

nε2
(1)

where C > 0 is some constant. What is the best C that you can get?
(Hint: use Chebychev’s inequality and union bound)

(b) Show that, if fS is the minimizer of the empirical risk on H, then the above inequality
implies that with probability 1− η we have

I[fS ] ≤ IS [fS ] + ε(n, η,N)

where ε(n, η,N) =
√

CNM2

ηn and 0 < η ≤ 1. Discuss the behavior of IS [fS ], ε(n, η,N)
and their sum as functions of N .

(c) Denote with fS and f∗ the minimizers on H of the empirical and expected risks, respec-
tively. Given (1), show that

I[fS ]− I[f∗] ≤ 2ε(n, η,N).

(Hint: add and subtract the empirical risks of fS and f∗ in the left hand side of the
above inequality. Recall that by definition fS minimizes the empirical risk. )

Problem 4 A reproducing kernel K is a Mercer kernel if it is continuous, symmetric, and positive semidef-
inite. Translation invariant kernels are those kernels given by K(x, y) = k(x− y) where k is
an even function on Rn. In the context of RLS, we’ve seen that using the translation invariant
Gaussian kernel leads to a solution which can be described as a superposition of “bumps”
centered on the training points.

Now consider using a different kind of bump, defined by

K(x, y) =

{
1− |x−y|2 if |x− y| ≤ 2,
0 otherwise.

(2)

We would like to know if this is indeed a valid Mercer kernel.

(a) Sketch the bump in Equation (2) as a function of the variable z = x− y.
(b) Suppose g ∈ L2(Rn) is continuous and even, and suppose the Fourier transform ĝ of

g is nonnegative (that is, ĝ(ω) ≥ 0). Show that under these conditions, the kernel
G(x, y) = g(x− y) is a Mercer kernel.
(Hint: use Fourier transforms)

(c) Given the result you proved in (b), show that the kernel K defined in Equation (2) above
is a Mercer kernel.

Problem 5 In this excercise you will implement and use regularized least squares with an un-regularized
bias term and weighted loss function, in an artificial classification problem with unbalanced
classes. You should use your solution for Problem 2 in this problem.

Weighted RLS. You will modify your function rlsTrain from the previous problem set, now
to take a new parameter gamma, which is a vector of weights to use in weighting the loss
function. More specifically:
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• rlsTrain(Ytrain,Xtrain,whichKernel,lambda,gamma) takes five inputs:

– Ytrain the training labels;
– Xtrain the training inputs;
– whichKernel the kernel to use, e.g. ’linear’; for this problem, your function need

only implement the weighted loss and bias term for the linear kernel.
– lambda the regularization parameter;
– gamma the vector of weights on the corresponding terms in the loss function, of the

same length as the number of training inputs

and returns two outputs

– coeffs the optimal RLS coefficients
– b the optimal RLS bias

In addition, you will write a function
rlsHoldOut(Ytrain,Xtrain,Yvalidation,Xvalidation,lambdas,gamma) that evaluates the
weighted error on a validation set, for multiple values of the regularization parameter:

• rlsHoldOut(Ytrain,Xtrain,Yvalidation,Xvalidation,lambdas,gamma) takes 6 in-
puts:

– Ytrain the training labels;
– Xtrain the training inputs;
– Yvalidation the validation labels;
– Xvalidation the validation inputs;
– lambdas a vector of values to try for the regularization parameter λ
– gamma the vector of weights on the corresponding terms in the loss function, of the

same length as the number of validation inputs

and returns one output

– valerr a vector of (weighted) errors on the validation set – one error value for each
RLS solution corresponding to a value of λ in lambdas

– (You can also return the learned coefficients, if you’d like.)

Data Generation. You will generate a toy dataset for binary classification, in which the
points are sampled from a mixture of two Gaussians. The points of class −1 are sampled
from a two-dimensional Gaussian with mean (−2, 0) and the points of class +1 are sampled
from a two-dimensional Gaussian with mean (1, 0) – both Gaussians should be spherical with
variance 1. To play with the balance of the data, we will vary the probability of sampling from
the positive versus the negative class. Write a function SampleGaussians2D(nPoints,pPos)
to do this:

• SampleGaussians2D(nPoints,pPos) takes two arguments

– nPoints the total number of points to sample;
– pPos the probability of each point being in the positive class (they should be i.i.d.)

and returns two outputs
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– X a nPoints× 2 matrix in which each row gives one sampled point;
– Y a vector of length nPoints giving the labels corresponding to the rows in X.

Experimental protocol. We want to see the effect of the un-regularized bias term and the
weights on the loss function, individually and combined, when we vary the balance of the
data. First, you should sample a single test set, balanced between the classes. Then sample
both a training set and validation set, for each of a number of settings of pPos, the probability
of the positive class. Vary the probability of the positive class from 0.5 to (nearly) 1.

(a) You should produce four tables of the following form:
pPos bias weights best λ training accuracy validation accuracy test accuracy
0.5 0.12 ... 2.78 0.96 0.83 0.79

...

Produce one table for each of:

• Linear RLS;
• Linear RLS with a bias term;
• Linear RLS with a weighted loss function;
• Linear RLS with both a bias term and a weighted loss function.

Note:

• For each experiment, you should be choosing the value of λ to minimize the weighted
loss on the corresponding validation set.
• If f∗(·) is the optimal function chosen by RLS, the classification function should be

sgn(f∗(·)).
• Please report the accuracy on the training, validation and test sets all in terms of

the percentage of points correctly classified.
• For the ’weights’ column, please describe their numerical values as concisely as

possible.

(b) You should also produce five figures:

• One figure for each of the tables, showing the test set and the decision boundaries
for the different settings of pPos. Use the legend function to label the different
decision boundaries. Matlab’s contour function might be helpful here.
• One figure plotting the test set accuracy (percentage of points correctly classified)

versus pPos for each of the four tables. (Label the curves, please.)

Weights. If N , N−, and N+ are the total number of points, the number of points in class
−1, and the number in +1, respectively, you might choose the weights for the weighted loss
to be γ+ = N−/N for class +1 and γ− = N+/N for class −1. Feel free to experiment with
other weighting schemes as well.

Writeup. Please include the four tables and the five figures above, as well as all of your code.

Problem 6 In this problem, we will look at gradient descent first as a regularized algorithm based on
early-stopping and then as a tool for solving RLS problems. We also recall the successive
approximation scheme associated to a contractive map.
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Recall that, by the fixed point theorem (see e.g. [1] or [2]), if c∗ ∈ Rn satisfies

c∗ = T (c∗),

where the map T is a contraction, i.e. ‖Tc− Tc′‖2 ≤ L‖c− c′‖2 with 0 < L < 1, for all c, c′,
then the iteration

ci = T (ci−1) (3)

with c0 = 0 converges to c∗. Here we have temporarily used subscripts to denote iterates (not
elements).

We have seen that the solution of ERM on a RKHS can be written as f =
∑n

i=1 ciK(·, xi)
where the xi belong to the training set. Then the ERM problem can be written as

min
c∈Rn

‖Y −Kc‖22 (4)

where K is the (n× n) kernel matrix and c, Y are the (n-dimensional) vectors of coefficients
and labels respectively.

By assuming that n ≥ ‖K‖ = maximum eigenvalue of the kernel matrix (always true for the
Gaussian kernel), we can ensure convergence of the iterative procedures described below.

(a) Prove that if c∗ minimizes the empirical risk in (4), if and only if it also satisfies c∗ = T (c∗)
with

T (c) := c− 1
n

(Kc− Y ). (5)

(b) Implement in Matlab the iteration (3) for the particular map given in (5). Construct
your own toy dataset, and show empirically that if the number of iterations is chosen
appropriately (that is, if we choose a good early stopping point), we can avoid overfitting.
Use the Gaussian kernel with sigma equal to the average distance between the points
in the training set. We could use other kernels of course, but the Gaussian kernel will
conveniently allow us to define a stable learning rate of the form chosen in (5).

(c) Now recall Tikhonov regularization problem

min
c∈Rn
{‖Y −Kc‖22 + λctKc}. (6)

Show that c∗λ solves the problem (6) if and only if it also satisfies c∗λ = T (c∗λ) with

Tλ(c) := c− 1
n+ λ

((K + λI)c− Y ). (7)

(d) Implement in Matlab the iteration (3) for the map (7), and evaluate its behavior on the
same dataset you used in (b). Discuss the (empirical) interplay between the number of
iterations and the parameter λ, and provide evidence (plots etc.) to support your claims.
For all experiments, use the Gaussian kernel with sigma chosen to be the average distance
between the points in the training set.
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