Manifold Regularization

Lorenzo Rosasco

9.520 Class 09

March 3, 2010
Goal To analyze the limits of learning from examples in high dimensional spaces. To introduce the semi-supervised setting and the use of unlabeled data to learn the intrinsic geometry of a problem. To define Riemannian Manifolds, Manifold Laplacians, Graph Laplacians. To introduce a new class of algorithms based on Manifold Regularization (LapRLS, LapSVM).
Why using unlabeled data?

- labeling is often an “expensive” process
- semi-supervised learning is the natural setting for human learning
Semi-supervised Setting

u i.i.d. samples drawn on X from the marginal distribution $p(x)$

$$\{x_1, x_2, \ldots, x_u\},$$

only n of which endowed with labels drawn from the conditional distributions $p(y|x)$

$$\{y_1, y_2, \ldots, y_n\}.$$

The extra $u - n$ unlabeled samples give additional information about the marginal distribution $p(x)$.
The importance of unlabeled data
Assume X is the D-dimensional hypercube $[0, 1]^D$. The worst case scenario corresponds to uniform marginal distribution $p(x)$.

Local Methods

A prototype example of the effect of high dimensionality can be seen in nearest methods techniques. As d increases, local techniques (e.g., nearest neighbors) become rapidly ineffective.
Curse of dimensionality and k-NN

- It would seem that with a reasonably large set of training data, we could always approximate the conditional expectation by k-nearest-neighbor averaging.
- We should be able to find a fairly large set of observations close to any \(x \in [0, 1]^D \) and average them.
- This approach and our **intuition break down in high dimensions**.
Suppose we send out a cubical neighborhood about one vertex to capture a fraction r of the observations. Since this corresponds to a fraction r of the unit volume, the expected edge length will be

$$e_D(r) = r^{\frac{1}{D}}.$$

Already in ten dimensions $e_{10}(0.01) = 0.63$, that is to capture 1% of the data, we must cover 63% of the range of each input variable!

No more ”local” neighborhoods!
Distance vs volume in high dimensions

![Graph showing distance vs volume for different values of p (1, 2, 3, 10).](image)
Intrinsic dimensionality

Raw format of natural data is often high dimensional, but in many cases it is the outcome of some process involving only few degrees of freedom.

Examples:

- Acoustic Phonetics ⇒ vocal tract can be modelled as a sequence of few tubes.
- Facial Expressions ⇒ tonus of several facial muscles control facial expression.
- Pose Variations ⇒ several joint angles control the combined pose of the elbow-wrist-finger system.

Smoothness assumption: y’s are “smooth” relative to natural degrees of freedom, not relative to the raw format.
Manifold embedding
A d-dimensional manifold

\[\mathcal{M} = \bigcup_{\alpha} U_{\alpha} \]

is a mathematical object that generalizes domains in \mathbb{R}^d. Each one of the “patches” U_{α} which cover \mathcal{M} is endowed with a system of coordinates

\[\alpha : U_{\alpha} \rightarrow \mathbb{R}^d. \]

If two patches U_{α} and U_{β}, overlap, the transition functions

\[\beta \circ \alpha^{-1} : \alpha(U_{\alpha} \cap U_{\beta}) \rightarrow \mathbb{R}^d \]

must be smooth (eg. infinitely differentiable).

- The Riemannian Manifold inherits from its local system of coordinates, most geometrical notions available on \mathbb{R}^d: metrics, angles, volumes, etc.
Manifold’s charts
Since each point x over \mathcal{M} is equipped with a local system of coordinates in \mathbb{R}^d (its *tangent space*), all **differential operators** defined on functions over \mathbb{R}^d, can be extended to analogous operators on functions over \mathcal{M}.

Gradient: $\nabla f(x) = \left(\frac{\partial}{\partial x_1} f(x), \ldots, \frac{\partial}{\partial x_d} f(x) \right) \Rightarrow \nabla \mathcal{M} f(x)$

Laplacian: $\triangle f(x) = - \frac{\partial^2}{\partial x_1^2} f(x) - \cdots - \frac{\partial^2}{\partial x_d^2} f(x) \Rightarrow \triangle \mathcal{M} f(x)$
Measuring smoothness over \mathcal{M}

Given $f : \mathcal{M} \to \mathbb{R}$

- $\nabla_{\mathcal{M}} f(x)$ represents amplitude and direction of variation around x

- $S(f) = \int_{\mathcal{M}} \|\nabla_{\mathcal{M}} f(x)\|^2 dp(x)$ is a global measure of smoothness for f

- Stokes’ theorem (generalization of integration by parts) links gradient and Laplacian

$$S(f) = \int_{\mathcal{M}} \|\nabla_{\mathcal{M}} f(x)\|^2 dp(x) = \int_{\mathcal{M}} f(x) \Delta_{\mathcal{M}} f(x) dp(x)$$
A new class of techniques which extend standard Tikhonov regularization over RKHS, introducing the additional regularizer $\|f\|_I^2 = \int_M f(x) \nabla_M f(x) dp(x)$ to enforce smoothness of solutions relative to the underlying manifold

$$f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} V(f(x_i), y_i) + \lambda_A \|f\|_K^2 + \lambda_I \int_M f(x) \nabla_M f(x) dp(x)$$

- λ_I controls the complexity of the solution in the \textbf{intrinsic} geometry of \mathcal{M}.
- λ_A controls the complexity of the solution in the \textbf{ambient} space.
Other natural choices of $\| \cdot \|^2_I$ exist

- Iterated Laplacians $\int_M f \Delta^s_M f$ and their linear combinations. These smoothness penalties are related to Sobolev spaces

$$\int f(x) \Delta^s_M f(x) dp(x) \approx \sum_{\omega \in \mathbb{Z}^d} \| \omega \|^{2s} |\hat{f}(\omega)|^2$$

- Frobenius norm of the Hessian (the matrix of second derivatives of f) Hessian Eigenmaps; Donoho, Grimes 03

- Diffusion regularizers $\int_M fe^{t\Delta}(f)$. The semigroup of smoothing operators $G = \{ e^{-t\Delta_M} | t > 0 \}$ corresponds to the process of diffusion (Brownian motion) on the manifold.
We cannot compute the intrinsic smoothness penalty

$$\|f\|_i^2 = \int_{\mathcal{M}} f(x) \Delta_{\mathcal{M}} f(x) dp(x)$$

because we don't know the manifold \mathcal{M} and the embedding $\Phi : \mathcal{M} \rightarrow \mathbb{R}^D$.

But we assume that the unlabeled samples are drawn i.i.d. from the uniform probability distribution over \mathcal{M} and then mapped into \mathbb{R}^D by Φ.
Our proxy of the manifold is a weighted neighborhood graph $G = (V, E, W)$, with vertices V given by the points \{\(x_1, x_2, \ldots, x_u\}\), edges E defined by one of the two following adjacency rules

- connect x_i to its k nearest neighborhoods
- connect x_i to ϵ-close points

and weights W_{ij} associated to two connected vertices

$$W_{ij} = e^{-\frac{\|x_i - x_j\|^2}{\epsilon}}$$

Note: computational complexity $O(u^2)$
Neighborhood graph (cont.)
The graph Laplacian

The *graph Laplacian* over the weighted neighborhood graph (G, E, W) is the matrix

$$L_{ij} = D_{ii} - W_{ij}, \quad D_{ii} = \sum_j W_{ij}.$$

L is the discrete counterpart of the manifold Laplacian $\triangle_{\mathcal{M}}$

$$f^T L f = \sum_{i,j=1}^n W_{ij} (f_i - f_j)^2 \approx \int_{\mathcal{M}} \|\nabla f(x)\|^2 dp(x).$$

Analogous properties of the *eigensystem*: nonnegative spectrum, null space

Looking for rigorous convergence results
Operator \mathcal{L}: “out-of-sample extension” of the graph Laplacian \mathbf{L}

\[
\mathcal{L}(f)(x) = \sum_i (f(x) - f(x_i))e^{-\frac{\|x-x_i\|^2}{\epsilon}} \quad x \in X, \ f : X \to \mathbb{R}
\]

Theorem: Let the u data points $\{x_1, \ldots, x_u\}$ be sampled from the uniform distribution over the embedded d-dimensional manifold \mathcal{M}. Put $\epsilon = u^{-\alpha}$, with $0 < \alpha < \frac{1}{2+d}$. Then for all $f \in C^\infty$ and $x \in X$, there is a constant C, s.t. in probability,

\[
\lim_{u \to \infty} C \frac{\epsilon^{-(d+2)/2}}{u} \mathcal{L}(f)(x) = \triangle_{\mathcal{M}} f(x).
\]
Replacing the unknown manifold Laplacian with the graph Laplacian \(\| f \|_I^2 = \frac{1}{u^2} f^T L f \), where \(f \) is the vector \([f(x_1), \ldots, f(x_u)]\), we get the minimization problem

\[
f^* = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} V(f(x_i), y_i) + \lambda_A \| f \|_K^2 + \frac{\lambda_I}{u^2} f^T L f
\]

- \(\lambda_I = 0 \): standard regularization (RLS and SVM)
- \(\lambda_A \to 0 \): out-of-sample extension for Graph Regularization
- \(n = 0 \): unsupervised learning, Spectral Clustering
Using the same type of reasoning used in Class 3, a Representer Theorem can be easily proved for the solutions of Manifold Regularization algorithms. The expansion range over all the \textbf{supervised and unsupervised} data points

\[
f(x) = \sum_{j=1}^{u} c_j K(x, x_j).
\]
LapRLS

Generalizes the usual RLS algorithm to the semi-supervised setting.
Set $V(w, y) = (w - y)^2$ in the general functional.
By the representer theorem, the minimization problem can be restated as follows

$$
c^* = \arg \min_{c \in \mathbb{R}^u} \frac{1}{n} (y - JKc)^T (y - JKc) + \lambda_A c^T Kc + \frac{\lambda_I}{u^2} c^T KLKc,
$$

where y is the u-dimensional vector $(y_1, \ldots, y_n, 0, \ldots, 0)$, and J is the $u \times u$ matrix $\text{diag}(1, \ldots, 1, 0, \ldots, 0)$.
The functional is differentiable, strictly convex and coercive. The derivative of the object function vanishes at the minimizer \mathbf{c}^*

$$\frac{1}{n}\mathbf{KJ}(\mathbf{y} - \mathbf{JKc}^*) + (\lambda_A\mathbf{K} + \frac{\lambda_I n}{u^2}\mathbf{KLK})\mathbf{c}^* = 0.$$

From the relation above and noticing that due to the positivity of λ_A, the matrix \mathbf{M} defined below, is invertible, we get

$$\mathbf{c}^* = \mathbf{M}^{-1}\mathbf{y},$$

where

$$\mathbf{M} = \mathbf{JK} + \lambda_A n\mathbf{I} + \frac{\lambda_I n^2}{u^2}\mathbf{LK}.$$
Generalizes the usual SVM algorithm to the semi-supervised setting.
Set $V(w, y) = (1 - yw)_+$ in the general functional above. Applying the representer theorem, introducing *slack variables* and adding the unpenalized *bias term* b, we easily get the primal problem

$$c^* = \arg \min_{c \in \mathbb{R}^u, \xi \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \xi_i + \lambda_A c^T Kc + \frac{\lambda}{u^2} c^T \mathbf{1} c$$

subject to: $y_i(\sum_{j=1}^u c_j K(x_i, x_j) + b) \geq 1 - \xi_i \quad i = 1, \ldots, n$

$$\xi_i \geq 0 \quad i = 1, \ldots, n$$
Substituting in our expression for c, we are left with the following “dual” program:

$$\alpha^* = \arg \max_{\alpha \in \mathbb{R}^n} \sum_{i=1}^n \alpha_i - \frac{1}{2} \alpha^T Q \alpha$$

subject to:

$$\sum_{i=1}^n y_i \alpha_i = 0$$
$$0 \leq \alpha_i \leq \frac{1}{n} \quad i = 1, \ldots, n$$

Here, vQ is the matrix defined by

$$Q = YJK \left(2\lambda A + 2\frac{\lambda I}{u^2} LK \right)^{-1} J^T Y.$$

One can use a standard SVM solver with the matrix Q above, hence compute c solving a linear system.
Numerical experiments

http://manifold.cs.uchicago.edu/manifold_regularization

- Two Moons Dataset
- Handwritten Digit Recognition
- Spoken Letter Recognition
Ideas similar to those described in this class can be used in other learning tasks. The spectral properties of the (graph-) Laplacian turns out to be useful:

If M is compact, the operator \triangle_M has a countable sequence of eigenvectors ϕ_k (with non-negative eigenvalues λ_k), which is a complete system of $L_2(M)$. If M is connected, the constant function is the only eigenvector corresponding to null eigenvalue.
The Laplacian allows to exploit some geometric features of the manifold.

- **Dimensionality reduction.** If we project the data on the eigenvectors of the graph Laplacian we obtain the so-called Laplacian eigenmap algorithm. It can be shown that such a feature map preserves local distances.

- **Spectral clustering.** The smallest non-null eigenvalue of the Laplacian is the value of the minimum cut on the graph and the associated eigenvector is the cut.