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@ Regularization derivation of SVMs.
@ Geometric derivation of SVMs.
@ Practical issues.
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The Regularization Setting (Again)

We are given n examples (x1,y1), ..., (Xn, Yn), with x; € R" and
y; € {—1,1} for all i. As mentioned last class, we can find a
classification function by solving a regularized learning problem:

1 n
in=S "V (yi,f(x)) + Af|2.
min — iE_l (vi, F(xi)) + Allf %

Note that in this class we are specifically consider binary
classification .
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The Hinge Loss

The classical SVM arises by considering the specific loss
function

V(f(x,y)) = (1 = yf(x))+,

where
(k)+ = max(k, 0).
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The Hinge Loss

Hinge Loss

C. Frogner Vector Machines



Substituting In The Hinge Loss

With the hinge loss, our regularization problem becomes

n

1
in = 1—vif(x A2,
min - iE_l( yif (xi)+ + Allf[%

Note that we don’t have a % multiplier on the regularization
term.
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Slack Variables

This problem is non-differentiable (because of the “kink” in V),
so we introduce slack variables &;, to make the problem easier

to work with:
min - 3Ly &+ I
subjectto:  yif(xi))>1-¢& i=1,...,n

& >0 i=1,....n
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Applying The Representer Theorem

Substituting in:
n
() = ciK(x,x),
i=1

we arrive at a constrained quadratic programming problem:

i 1s~n : T
ATk
subject to : yizjnzlch(Xi,Xj)Zl—fi i=1,....n
§ >0 i=1,...,n
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Adding A Bias Term

If we add an unregularized bias term b, which presents some
theoretical difficulties to be discussed later, we arrive at the
“primal” SVM:

. is™n e T
CER”IKQ&{ER” n Z|:1 & + Ac' Ke

subject to: yi(D oL, K (xi,x) +b)>1—-& i=1,...,n
& >0 i=1,...,n
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Standard Notation

In most of the SVM literature, instead of the regularization
parameter )\, regularization is controlled via a parameter C,
defined using the relationship

__1

- 2an’
Using this definition (after multiplying our objective function by
the constant% , the basic regularization problem becomes

n

1
. V(vi f(x: ~IIf 2'
py?rg Ci:1 Vi, (Xu))+2|| |1%¢

Like \, the parameter C also controls the tradeoff between
classification accuracy and the norm of the function. The primal
problem becomes ...
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The Reparametrized Problem

min CYDM. &+ LicTKe
CERN bER RN 2izabit 2

subject to : yi(Zj”:lch(xi,xj)er)z1—§i i=1,...,n
§ >0 i=1,...,n
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How to Solve?

. n ¢4 1T
CGRn,rg]GIE,SGRn CZI:1§I+2C KC
subject to: yi(3Ly K (i, %) +b)>1-§ i=1,....n
§>0 i—=1....n

@ This is a constrained optimization problem. The general
approach:
@ Form the primal problem — we did this.
@ Lagrangian from primal — just like Lagrange multipliers.
@ Dual — one dual variable associated to each primal
constraint in the Lagrangian.
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The Reparametrized Lagrangian

We derive the dual from the primal using the Lagrangian:

L(C7§7b7a7g) = CZ& +CTKC
i=1
_Zai(Yi{ZCjK(Xi,Xj)+b}— 1+¢)

i=1 j=1

- G4
i—1

C. Frogner Support Vector Machines



The Reparametrized Dual, |

oL I
b — ;%M =0

oL

8—6:0 — C—Ozi—CiZO

— 0<qg<C

The reduced Lagrangian:
n n
LR(C,a) = CTKC — Zai(yi ZCJ'K(Xi,Xj) — 1)
i=1 j=1

The relation between ¢ and «:
oL

ac —0=Ci=a
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The Primal and Dual Problems Again

. n e o4 1T
CER”vrlPEIQ,&eR" Cii1&i+3¢ Ke
subject to: yi(3L, K (X, ) +b) > 1—¢§ i=1,...,n
n 1. 7T
an 2i—1 i — 30 Qa
subject o - Zinzl Yiaj =0

0<o<C i=1,...,n
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SVM Training

@ Basic idea: solve the dual problem to find the optimal a’s,
and use them to find b and c:

Ci = ajyi

n
b =Yi —ZCjK(Xi,Xj)
j=1

(We showed c; several slides ago, will show b in a bit.)

@ The dual problem is easier to solve the primal problem. It
has simple box constraints and a single inequality
constraint, and the problem can be decomposed into a
sequence of smaller problems (see appendix).
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Optimality conditions: complementary slackness

The dual variables are associated with the primal constraints as
follows:

ap = Yi{ZCjK(Xi,Xj)+b}—1+§i
i—1
G = §=>0

Complementary slackness: at optimality, either the primal
inequality is satisfied with equality or the dual variable is zero.
l.e. if c, &, b, « and ¢ are optimal solutions to the primal and
dual, then
n
a(yi{) KX, x)+bl—1+¢&) = 0
j=1

G&§ = 0
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Optimality Conditions: all of them

All optimal solutions must satisfy:

n n
ZCJ'K(Xi,Xj)—ZyiajK(Xi,Xj):0 i:1,...,n
j=1 j=1

n
Zai)ﬁ =0

C—ai—¢=0 i=1,...,n
n
yi(> yioK(xi,x) +b) —1+& >0 i=1...n
=1
n
oY YK (xi.x) +b) 1+ =0 i=1....n
j=1
G&=0  i=1,...,n
&,0i,G >0  i=1,...,n
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Optimality Conditions, Il

The optimality conditions are both necessary and sufficient. If
we have c, £, b, o and ¢ satisfying the above conditions, we
know that they represent optimal solutions to the primal and
dual problems. These optimality conditions are also known as
the Karush-Kuhn-Tucker (KKT) conditons.
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Toward Simpler Optimality Conditions — Determining

b

Suppose we have the optimal o;’s. Also suppose (this happens
in practice) that there exists an i satisfying 0 < «; < C. Then

a<C = (>0
= & =0

n
= YO _yioK(x,%) +b)-1=0
=1

n
— b=y YioK(x,%)
j=1

So if we know the optimal a’s, we can determine b.

C. Frogner Support Vector Machines



Towards Simpler Optimality Conditions, |

Defining our classification function f(x) as

n
f(x) = yiaK(x,x) + b,
i=1
we can derive “reduced” optimality conditions. For example,

consider an i such that y;f(x;) < 1:

yif(x) <1 = & >0
= (=0
— ai:C

C. Frogner Support Vector Machines



Towards Simpler Optimality Conditions, Il

Conversely, suppose «j = C:

a=C = yf(x)-1+§=0
e yif(xi)§1
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Reduced Optimality Conditions

Proceeding similarly, we can write the following “reduced”
optimality conditions (full proof: homework):

a=0 — yif(Xi)Zl
O<a<C = yif(xi):l
aj=C «— yif(Xi)<1

ap=0 «— yif(Xi)>1
a=C = yf(x)<1
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Geometric Interpretation of Reduced Optimality
Conditions
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Summary so far

@ The SVM is a Tikhonov regularization problem, with the
hinge loss:

n

1
min & (L =)+ A
i=

@ Solving the SVM means solving a constrained quadratic
program.

@ Solutions can be sparse — few non-zero coefficients. This
is where the “support vector” in SVM comes from.
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The Geometric Approach

The “traditional” approach to developing the mathematics of
SVM is to start with the concepts of separating hyperplanes
and margin. The theory is usually developed in a linear space,
beginning with the idea of a perceptron, a linear hyperplane
that separates the positive and the negative examples. Defining
the margin as the distance from the hyperplane to the nearest
example, the basic observation is that intuitively, we expect a
hyperplane with larger margin to generalize better than one
with smaller margin.
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Large and Small Margin Hyperplanes

(€Y (b)
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Classification With Hyperplanes

We denote our hyperplane by w, and we will classify a new
point x via the function

f(x) =sign (w - x). (1)

Given a separating hyperplane w we let x be a datapoint
closest to w, and we let x¥ be the unique point on w that is
closest to x. Obviously, finding a maximum margin w is
equivalent to maximizing ||[x — x"||...
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Deriving the Maximal Margin, |

For some k (assume k > O for convenience),

w- X =k
w-x" =0
= w-x—-x")=Kk
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Deriving the Maximal Margin, Il

Noting that the vector x — x% is parallel to the normal vector w,

weeox = e ()

i lE =X
Wi
=Wl Ik =]
= Wil I6x = x|
— X=X = o
w
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Deriving the Maximal Margin, 1lI

k is a “nuisance parameter”. WLOG, we fix k to 1, and see that
maximizing [[x — x| is equivalent to maximizing -, which in

turn is equivalent to minimizing ||w|| or ||w||2. We can now
define the margin as the distance between the hyperplanes
w-x=0andw - x =1
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The Linear, Homogeneous, Separable SVM

min w2
w

Rn

subjectto: yj(w-x)>1 i=1,...,n
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Bias and Slack

The SVM introduced by Vapnik includes an unregularized bias
term b, leading to classification via a function of the form:

f(x) =sign (w - x +b).

In practice, we want to work with datasets that are not linearly
separable, so we introduce slacks &, just as before. We can still
define the margin as the distance between the hyperplanes
w-x =0andw - x =1, but this is no longer particularly
geometrically satisfying.
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The New Primal

With slack variables, the primal SVM problem becomes

i n ¢4 1 2

weR”,r?eI]%n,beR Coimabi+slwl
subjectto: yj(w-x+b)>1-¢ i=1,...,n
&>0 i=1,....n
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Historical Perspective

Historically, most developments begin with the geometric form,
derived a dual program which was identical to the dual we
derived above, and only then observed that the dual program
required only dot products and that these dot products could be
replaced with a kernel function.

C. Frogner Support Vector Machines



More Historical Perspective

In the linearly separable case, we can also derive the
separating hyperplane as a vector parallel to the vector
connecting the closest two points in the positive and negative
classes, passing through the perpendicular bisector of this
vector. This was the “Method of Portraits”, derived by Vapnik in
the 1970’s, and recently rediscovered (with non-separable
extensions) by Keerthi.
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@ The SVM is a Tikhonov regularization problem, with the
hinge loss:

n

1

in =) (1-vyif(x f1|3,.

min i}_:( yif () + Allf (17

@ Solving the SVM means solving a constrained quadratic
program.

@ It's better to work with the dual program.

@ Solutions can be sparse — few non-zero coefficients. This
is where the “support vector” in SVM comes from.

@ There is alternative, geometric interpretation of the SVM,
from the perspective of “maximizing the margin.”
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Practical issues

@ We can also use RLS for classification. What are the
tradeoffs?

@ SVM possesses sparsity: can have parameters set to zero
in the solution. This enables potentially faster training and
faster prediction than RLS.

@ SVM QP solvers tend to have many parameters to tune.

@ SVM can scale to very large datasets, unlike RLS — for the
moment (active research topic!).
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Good Large-Scale SVM Solvers

@ SVM Light: http://svmight.]joachins.org
@ SVM Torch: http://ww. t orch. ch

@ libSVM:
http://ww. csie.ntu.edu.tw ~cjlin/libsvnl
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Appendix

(Follows.)
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SVM Training

Our plan will be to solve the dual problem to find the a’s, and
use that to find b and our function f. The dual problem is easier
to solve the primal problem. It has simple box constraints and a
single inequality constraint, even better, we will see that the
problem can be decomposed into a sequence of smaller
problems.
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Off-the-shelf QP software

We can solve QPs using standard software. Many codes are
available. Main problem — the Q matrix is dense, and is
n-by-n, so we cannot write it down. Standard QP software
requires the Q matrix, so is not suitable for large problems.
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Decomposition, |

Partition the dataset into a working set W and the remaining
points R. We can rewrite the dual problem as:

max Zni:l ai + > =1
aw ERWI ag eRIR iew ieR
_1y, [QWW QWR][QW]
2low aR] Qrw Qrr aR
subject to : iew Yiti + X icrYii =0
0<qa <C,Vi
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Decomposition, Il

Suppose we have a feasible solution . We can get a better
solution by treating the oy as variable and the ag as constant.
We can solve the reduced dual problem:

max (1 —Qwrar)aw — aw Qwwaw
aw€R‘W‘
subject to : Yoiew Yidi = — D icr Yicy
0<a <C,VieW

C. Frogner Support Vector Machines



Decomposition, I

The reduced problems are fixed size, and can be solved using
a standard QP code. Convergence proofs are difficult, but this
approach seems to always converge to an optimal solution in
practice.
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Selecting the Working Set

There are many different approaches. The basic idea is to
examine points not in the working set, find points which violate
the reduced optimality conditions, and add them to the working
set. Remove points which are in the working set but are far
from violating the optimality conditions.
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