
Regularized Least Squares

Ryan M. Rifkin

Google, Inc.

2008

R. Rifkin Regularized Least Squares

Basics: Data

Data points S = {(X1, Y1), . . . , (Xn, Yn)}.

We let X simultaneously refer to the set {X1, . . . , Xn} and
to the n by d matrix whose i th row is X t

i .

R. Rifkin Regularized Least Squares

Basics: RKHS, Kernel

RKHS H with a positive semidefinite kernel function k :

linear: k(Xi , Xj) = X t
i Xj

polynomial: k(Xi , Xj) = (X t
i Xj + 1)d

gaussian: k(Xi , Xj) = exp

(

−
||Xi − Xj ||

2

σ2

)

Define the kernel matrix K to satisfy Kij = k(Xi , Xj).
Abusing notation, allow k to take and produce sets:

k(X , X) = K
Given an arbitrary point X∗, k(X , X∗) is a column vector
whose ith entry is k(Xi , X∗).

The linear kernel has special properties, which we discuss
in detail later.

R. Rifkin Regularized Least Squares

The RLS Setup

Goal: Find the function f ∈ H that minimizes the weighted
sum of the total square loss and the RKHS norm

min
f∈H

1
2

n
∑

i=1

(f (Xi) − Yi)
2 +

λ

2
||f ||2K . (1)

Note that in this formulation, we are minimizing the total
instead of the average loss. We avoid mucking around with
the factor of 1/n, which can be folded into λ.

This loss function “makes sense” for regression. We can
also use it for binary classification, where it “makes no
sense” but works great.

R. Rifkin Regularized Least Squares

Applying the Representer

The representer theorem guarantees that the solution to
(1) can be written as

f (·) =
n
∑

i=1

cik(Xi , ·),

for some c ∈ R
n.

We can therefore rewrite (1) as

min
c∈Rn

1
2
||Y − Kc||22 +

λ

2
||f ||2K .

R. Rifkin Regularized Least Squares

Applying the Representer Theorem, II

Consider a function of the form:

f (·) =

n
∑

i=1

cik(Xi , ·),

For such a function,

||f ||2K = < f , f >K

=

〈

n
∑

i=1

cik(Xi , ·),

n
∑

j=1

cjk(Xj , ·)

〉

K

=
n
∑

i=1

n
∑

j=1

cicj
〈

k(Xi , ·), k(Xj , ·)
〉

K

=
n
∑

i=1

n
∑

j=1

cicjk(Xi , Xj)

= ctKc

R. Rifkin Regularized Least Squares

The RLS Solution

1
2
||Y − Kc||22 +

λ

2
ctKc

is clearly convex in c (why?), so we can find its minimum
by setting the gradient w.r.t c to 0:

−K (Y − Kc) + λKc = 0

(K + λI)c = Y

c = (K + λI)−1Y

We find c by solving a system of linear equations.

R. Rifkin Regularized Least Squares

The RLS Solution, Comments

The solution exists and is unique (for λ > 0).

Define G(λ) = K + λI. (Often λ is clear from context and
we write G.)

The prediction at a new test point X∗ is:

f (X∗) =
∑

cik(Xi , X∗)

= k(X , X∗)
tc

= Y tG−1k(X , X∗).

The use of G−1 (or other inverses) is formal only. We do
not recommend taking matrix inverses.

R. Rifkin Regularized Least Squares

Solving RLS, Parameters Fixed.

Situation: All hyperparameters fixed

We just need to solve a single linear system

(K + λI)c = y .

The matrix K + λI is symmetric positive definite, so the
appropriate algorithm is Cholesky factorization.

In Matlab, the “slash” operator seems to be using
Cholesky, so you can just write c = (K+l*I)\Y, but to be
safe, (or in octave), I suggest R = chol(K+l*I); c =
(R\(R’\Y));.

R. Rifkin Regularized Least Squares

Solving RLS, Varying λ

Situation: We don’t know what λ to use, all other
hyperparameters fixed.

Form the eigendecomposition K = QΛQt , where Λ is
diagonal with Λii ≥ 0 and QQt = I.

G = K + λI

= QΛQt + λI

= Q(Λ + λI)Qt ,

which implies G−1 = Q(Λ + λI)−1Qt .

R. Rifkin Regularized Least Squares

Solving RLS, Varying λ, Cont’d

O(n3) time to solve one (dense) linear system, or to
compute the eigendecomposition (constant is maybe 4x
worse). Given Q and Λ, we can find c(λ) in O(n2) time:

c(λ) = Q(Λ + λI)−1QtY ,

noting that (Λ + λI) is diagonal.

Finding c(λ) for many λ’s is (essentially) free!

R. Rifkin Regularized Least Squares

Validation

We showed how to find c(λ) quickly as we vary λ.

But how do we decide if a given λ is “good”?

Simplest idea: Use the training set error.

Problem: This invariably overfits. Don’t do this!

Other methods are possible, but today we consider
validation.

Validation means checking our function’s behavior on
points other than the training set.

R. Rifkin Regularized Least Squares

Types of Validation

If we have a huge amount of data, we could hold back
some percentage of our data (30% is typical), and use this
development set to choose hyperparameters.
More common is k-fold cross-validation, which means a
couple of different things:

Divide your data into k equal sets S1, . . . , Sk . For each i,
train on the other k − 1 sets and test on the ith set.
A total of k times, randomly split your data into a training
and test set.

The limit of (the first kind of) k-fold validation is
leave-one-out cross-validation.

R. Rifkin Regularized Least Squares

Leave-One-Out Cross-Validation

For each data point xi , build a classifier using the
remaining n − 1 data points, and measure the error at xi .

Empirically, this seems to be the method of choice when n
is small.

Problem: We have to build n different predictors, on data
sets of size n − 1.

We will now proceed to show that for RLS, obtaining the
LOO error is (essentially) free!

R. Rifkin Regularized Least Squares

Leave-One-Out CV: Notation

Define Si to be the data set with the i th point removed:
Si = {(X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn)}.

The i th leave-one-out value is fSi (Xi).

The i th leave-one-out error is Yi − fSi (Xi).

Define LV and LE to be the vectors of leave-one-out values
and errors over the training set.

||LE ||
2
2 is considered a good empirical proxy for the error on

future points, and we often want to choose parameters by
minimizing this quantity.

R. Rifkin Regularized Least Squares

LE derivation, I

Imagine (hallucinate) that we already know fSi (Xi).

Define the vector Y i via

Y i
j =

{

Yj j 6= i
fSi (Xi) j = i

R. Rifkin Regularized Least Squares

LE derivation, II

Suppose we solve a Tikhonov problem with Y i instead of
Y as the labels. Then fSi is the optimizer:

1
2

n
∑

j=1

(Y i
j − f (Xj))

2 +
λ

2
||f ||2K

≥
1
2

∑

j 6=i

(Y i
j − f (Xj))

2 +
λ

2
||f ||2K

≥
1
2

∑

j 6=i

(Y i
j − fSi (Xj))

2 +
λ

2
||fSi ||2K

=
1
2

n
∑

j=1

(Y i
j − fSi (Xj))

2 +
λ

2
||fSi ||2K .

R. Rifkin Regularized Least Squares

LE derivation, III

Therefore,

c i = G−1Y i

fSi (Xi) = (KG−1Y i)i

This is circular reasoning so far, because we need to know
fSi (Xi) to form Y i in the first place.

However, assuming we have already solved RLS for the
whole training set, and we have computed
fS(X) = KG−1Y , we can do something nice . . .

R. Rifkin Regularized Least Squares

LE derivation, IV

fSi (Xi) − fS(Xi) =
∑

j

(KG−1)ij(Y
i
j − Yj)

= (KG−1)ii(fSi (Xi) − Yi)

fSi (Xi) =
fS(Xi) − (KG−1)iiYi

1 − (KG−1)ii

=
(KG−1Y)i − (KG−1)iiYi

1 − (KG−1)ii
.

R. Rifkin Regularized Least Squares

LE derivation, V

LV =
KG−1Y − diagm(KG−1)Y

diagv (I − KG−1)
,

LE = Y − LV

= Y +
diagm(KG−1)Y − KG−1Y

diagv (I − KG−1)

=
diagm(I − KG−1)Y
diagv (I − KG−1)

+
diagm(KG−1)Y − KG−1Y

diagv (I − KG−1)

=
Y − KG−1Y

diagv (I − KG−1)
.

R. Rifkin Regularized Least Squares

LE derviation, VI

We can simplify our expressions in a way that leads to better
computational and numerical properties by noting

KG−1 = QΛQtQ(Λ + λI)−1Qt

= QΛ(Λ + λI)−1Qt

= Q(Λ + λI − λI)(Λ + λI)−1Qt

= I − λG−1.

R. Rifkin Regularized Least Squares

LE derivation, VII

Substituting into our expression for LE yields

LE =
Y − KG−1Y

diagv (I − KG−1)

=
Y − (I − λG−1)Y

diagv (I − (I − λG−1))

=
λG−1Y

diagv (λG−1)

=
G−1Y

diagv (G−1)

=
c

diagv (G−1)
.

R. Rifkin Regularized Least Squares

The cost of computing LE

For RLS, we compute LE via

LE =
c

diagv (G−1)
.

We already showed how to compute c(λ) in O(n2) time
(given K = QΛQt).

We can also compute a single entry of G(λ)−1 in O(n)
time:

G−1
ij = (Q(Λ + λI)−1Qt)ij

=

n
∑

k=1

QikQjk

Λkk + λ
,

and therefore we can compute diag(G−1), and compute
LE , in O(n2) time.

R. Rifkin Regularized Least Squares

Summary So Far

If we can (directly) solve one RLS problem on our data, we
can find a good value of λ using LOO optimization at
essentially the same cost.

When can we solve one RLS problem?

We need to form K , which takes O(n2d) time and O(n2)
memory. We need to perform a solve or an
eigendecomposition of K , which takes O(n3) time.

Usually, we run out of memory before we run out of time.

The practical limit on today’s workstations is (more-or-less)
10,000 points (using Matlab).

How can we do more?

R. Rifkin Regularized Least Squares

The Linear Case

The linear kernel is k(Xi , Xj) = X t
i Xj .

The linear kernel offers many advantages for computation.

Key idea: we get a decomposition of the kernel matrix for
free: K = XX t .

In the linear case, we will see that we have two different
computation options.

R. Rifkin Regularized Least Squares

Linear kernel, linear function

With a linear kernel, the function we are learning is linear as
well:

f (x) = ctk(X , x)

= ctXx

= w tx ,

where we define the hyperplane w to be X tc. We can classify
new points in O(d) time, using w , rather than having to
compute a weighted sum of n kernel products (which will
usually cost O(nd) time).

R. Rifkin Regularized Least Squares

Linear kernel, SVD approach, I

Assume n, the number of points, is bigger than d , the
number of dimensions. (If not, the best bet is to ignore the
special properties of the linear kernel.)

The economy-size SVD of X can be written as X = USV t ,
with U ∈ R

n×d , S ∈ R
d×d , V ∈ R

d×d ,
U tU = V tV = VV t = Id , and S diagonal and positive
semidefinite. (Note that UU t 6= In).

We will express the LOO formula directly in terms of the
SVD, rather than K .

R. Rifkin Regularized Least Squares

Linear kernel, SVD approach, II

K = XX t = (USV t)(VSU t) = US2U t

K + λI = US2U t + λIn

=

[

U U⊥

]

[

S2 + λId
λIn−d

] [

U t

U t
⊥

]

= U(S2 + λId)U t + λU⊥U t
⊥

= U(S2 + λId)U t + λ(In − UU t)

= US2U t + λIn

R. Rifkin Regularized Least Squares

Linear kernel, SVD approach, III

(K + λI)−1

= (US2U t + λIn)−1

=

([

U U⊥

]

[

S2 + λId
λIn−d

] [

U t

U t
⊥

]

)−1

=

[

U U⊥

]

[

S2 + λId
λIn−d

]−1 [

U t

U t
⊥

]

= U(S2 + λI)−1U t + λ−1U⊥U t
⊥

= U(S2 + λI)−1U t + λ−1(I − UU t)

= U
[

(S2 + λI)−1 − λ−1I
]

U t + λ−1I

R. Rifkin Regularized Least Squares

Linear kernel, SVD approach, IV

c = (K + λI)−1Y

= U
[

(S2 + λI)−1 − λ−1I
]

U tY + λ−1Y

G−1
ij =

d
∑

k=1

UikUjk [(Skk + λ)−1 − λ−1] + [i = j]λ−1

G−1
ii =

d
∑

k=1

U2
ik [(Skk + λ)−1 − λ−1] + λ−1

LE =
c

diagv (G−1)

=
U
[

(S2 + λI)−1 − λ−1I
]

U tY + λ−1Y

diagv (U
[

(S2 + λI)−1 − λ−1I
]

U t + λ−1I)

R. Rifkin Regularized Least Squares

Linear kernel, SVD appraoch, computational costs

We need O(nd) memory to store the data in the first place.
The (economy-sized) SVD also requires O(nd) memory,
and O(nd2) time.

Once we have the SVD, we can compute the LOO error
(for a given λ) in O(nd) time.

Compared to the nonlinear case, we have replaced an
O(n) with an O(d), in both time and memory. If n >> d ,
this can represent a huge savings.

R. Rifkin Regularized Least Squares

Linear kernel, direct approach, I

For the linear kernel,

L = min
c∈Rn

1
2
||Y − Kc||22 +

λ

2
ctKc

= min
c∈Rn

1
2
||Y − XX tc||22 +

λ

2
ctXX tc

= min
w∈Rd

1
2
||Y − Xw ||22 +

λ

2
||w ||22.

Taking the derivative with respect to w ,

∂L
∂w

= X tXw − X tY + λw ,

and setting to zero implies

w = (X tX + λI)−1X tY .

R. Rifkin Regularized Least Squares

Linear kernel, direct approach, II

If we are willing to give up LOO validation, we can skip the
computation of c and just get w directly.

We can work with the Gram matrix X tX ∈ R
d×d .

The algorithm is identical to solving a general RLS problem
with kernel matrix X tX and labels X ty .

Form the eigendecomposition of X tX , in O(d3) time, form
w(λ) in O(d2) time.

Why would we give up LOO validation? Maybe n is very
large, so using a development set is good enough.

R. Rifkin Regularized Least Squares

Comparing the direct and SVD approaches

Asymptotic complexity is actually the same: it takes
O(nd2) time to form the SVD of X , or to form X tX .

The constant in forming the SVD is about 25.

Forming X tX can be (relatively) easily parallelized.

Recommendation: Use the SVD when possible, switch to
the direct approach when it gets too slow.

R. Rifkin Regularized Least Squares

Introducing the Subset of Regressors

Suppose that n is too large to apply nonlinear RLS, but we
need a nonlinear kernel.

(In some circumstances, we can explicitly construct
nonlinear feature features, such as 2nd-order polynomial,
and then use the linear approach. See my ICASSP 2007
paper.)

Another idea is the subset of regressors approach.

R. Rifkin Regularized Least Squares

Subset of Regressors

The representer theorem guarantees that the Tikhonov
solution can be written as

f (·) =

n
∑

i=1

cik(Xi , ·),

for some c ∈ R
n.

Suppose we divide our data into two pieces, XR and XS,
and require a priori that only the points in XR have nonzero
coefficients in the expansion:

f (·) =

|R|
∑

i=1

cik(Xi , ·),

for some c ∈ R
|R|: this is the subset of regressors method.

R. Rifkin Regularized Least Squares

Subset of Regressors, Derivation

Defining T = R ∪ S, we want to find

min
c∈Rn

1
2
||Y − KTRc||22 +

λ

2
ctKRRc

.

Setting the derivative to zero,

−KRT Y + K t
TRKTRc + λKRRc = 0

(KRT KTR + λKRR)c = KRT Y .

R. Rifkin Regularized Least Squares

Finding c(λ) is still cheap

Using the Cholesky factorization KRR = GGt ,

KRT KTR + λKRR

= KRT KTR + λGGt

= GG−1(KRT KTR + λGGt)G−tGt

= G(G−1KRT KTRG−t + λI)Gt .

We handle varying λ using an eigendecomposition of
G−1KRT KTRG−t .
Can we do LOO this way? Good question . . .

R. Rifkin Regularized Least Squares

Random Features

“Random Features for Large-Scale Kernel Machines,”
Rahimi and Recht, NIPS 2007.

Instead of using the kernel trick, project the data to a
low-dimensional Euclidean space using a random map z
s.t.:

k(x , y) = 〈φ(x), φ(y)〉 ≈ z(x)′z(y).

Two different proposals for z:
Fourier features cos(ω′x + b), where ω is drawn from the
Fourier transform of the kernel function and b is uniform on
[0, 2π].
Random binning features: similarity w.r.t. randomly shifted
grids of varying sizes.

R. Rifkin Regularized Least Squares

Parting Shot

“You should be asking how the answers will be used and what
is really needed from the computation. Time and time again
someone will ask for the inverse of a matrix when all that is
needed is the solution of a linear system; for an interpolating
polynomial when all that is needed is its values at some point;
for the solution of an ODE at a sequence of points when all that
is needed is the limiting, steady-state value. A common
complaint is that least squares curve-fitting couldn’t possibly
work on this data set and some more complicated method is
needed; in almost all such cases, least squares curve-fitting will
work just fine because it is so very robust.”

Leader, Numerical Analysis and Scientific Computation

R. Rifkin Regularized Least Squares

