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Bayesian Inference

Likelihood x Prior
p(DIG,M) p(BIM)
p(DIM)

Evidence

Posterior

p(O1D,M) =

The evidence for our

model M is also called p(DlM)=Ip(D|6’,M) p@IM)do
“Marginal Likelihood’

Moghaddam



Bayesian Nutshell

Posterior Likelihood x Prior

p(O1D,M) « p(DIO,M) p(6IM)

Moghaddam



Probability = Degree of Belief

Let C be the result of a coin toss, either heads (=h) or tails (=t),
which is about to be revealed to you.

Frequentist Interpretation
P(C=h)=p  “The long run frequency of heads is p”
p is a nonrandom property of the coin/experiment

Bayesian Interpretation

P(C=
P(C=
P(C=
P(C=

n)=1  “I’m absolutely certain the coin is heads”
N)=0  “I’m absolutely certain the coin is tails”
n) =1/2 “I’'m completely uncertain”

n)=p  “The probability that the coin is heads is p.”

p is an uncertain quantity; i.e., we model it as random and put a
distribution on it representing our uncertainty before learning C




Representing Beliefs (Artificial Intelligence)

Consider a robot. In order to behave intelligently
the robot should be able to represent beliefs about
propositions in the world:

“my charging station is at location (x,y,z)"

“my rangefinder is malfunctioning”

“that stormtrooper is hostile”

We want to represent the strength of these beliefs numerically in the brain of the
robot, and we want to know what rules (calculus) we should use to manipulate
those beliefs.
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Representing Beliefs |l

Let's use b(x) to represent the stength of belief in (plausibility of) proposition x.

x is definitely not true
x Is definitely true
strength of belief that = is true given that we know y is true

Cox Axioms (Desiderata):

e Strengths of belief (degrees of plausibility) are represented by real numbers
e Qualitative correspondence with common sense
e (Consistency

— If a conclusion can be reasoned in more than one way, then every way should
lead to the same answer.

— The robot always takes into account all relevant evidence.

— Equivalent states of knowledge are represented by equivalent plausibility
assignments.

Consequence: Belief functions (e.g. b(x), b(x|y), b(z,y)) must satisfy the rules of
probability theory, including Bayes rule. (see Jaynes, Probability Theory: The Logic
of Science)
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The Dutch Book Theorem

Assume you are willing to accept bets with odds proportional to the stength of your
beliefs. That is, b(z) = 0.9 implies that you will accept a bet:

x istrue win > $1
{ x is false lose $9

Then, unless your beliefs satisfy the rules of probability theory, including Bayes rule,

there exists a set of simultaneous bets (called a “Dutch Book”) which you are

willing to accept, and for which you are guaranteed to lose money, no matter

what the outcome.

The only way to guard against Dutch Books to to ensure that your beliefs are
coherent: i.e. satisfy the rules of probability.

Zoubin Ghahramani




Where do priers models come from?

Let {Sct} be stock prices for companies ¢ and times t. We need a
model of P(Sct).... where to begin?

We should only believe the predictions from a model if we have
faithfully encoded our knowledge into the probabilistic model.

PAC-Bayes: Risk of using a model related to divergence between
the distribution before and after receiving data.

® Use Bayesian methods as a language to encode assumptions:
Bayesian inference ensures that we never violate the
assumptions that our distributions represent when updating

our beliefs.




de Finetti’'s Theorem

® Theorem: Let Cy, C,, ... be an infinite sequence of binary random
variables. If the distribution of the sequence is invariant to
permutations (i.e. if the sequence is exchangeable), then

there is a random variable @ with some distribution F
such that conditioned on 6, the sequence is conditionally
independent and identically distributed (i.i.d.).

furthermore F(6 <t) =P < lim ZC’L' < t)
1=1

Bayesian justification for inventing a latent variable 6 and
assigning a (prior) distribution Q(0).

P(H,Cl,CQ,...) = Q(@) X P(Cﬂ@) X P(CQ|(9)




Asymptotic Certainty

Assume that data set D,,, consisting of n data points, was generated from some
true 6*, then under some regularity conditions, as long as p(68*) > 0

lim p(0|D,) = 6(0 — 6%)

n—oo

In the unrealizable case, where data was generated from some p*(x) which cannot
be modelled by any 6, then the posterior will converge to

lim p(0|D,) = 6(0 — 0)

n—oo

where 0 minimizes KL(p*(z), p(z|6)):

0 = argmin/p*(x) log P(2) dr = argmax/p*(a:) log p(x|0) dx

0 p(z|6) 6

Warning: careful with the regularity conditions, these are just sketches of the theoretical results
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Asymptotic Consensus

Consider two Bayesians with different priors, p1(6) and p2(8),
who observe the same data D.

Assume both Bayesians agree on the set of possible and impossible values of 6:

{0 pl((g) > O} — {(9 pg(@) > O}

Then, in the limit of n — oo, the posteriors, p1(0|D,,) and p2(0|D,,) will converge

(in uniform distance between distibutions p( Py, P>) = sup|P1(E) — P2(FE)|)
E
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Probability Supports
(Knowledge) Engineering

Universal Primitives
Independent uniformly distributed [0,1]-random variables
sufficient for any computable distribution

Means of combination
Build complex models from simple pieces P(X) - P(Y|X) = P(X,Y)

Means of abstraction
Create new primitives P(Z / / Z)dAdB---dY

Possible to devise inference algorithms that respect this
structure as well (see e.g., MIT-Church [GMRBT2008])




Bayesian Linear Regression

® Prior knowledge: data Y are noisy measurements of a linear
function fs(z) = 270 at points X=(x1,...,Xn)"

We are uncertain about the function, so as Bayesian we put a
prior on the space of linear functions. We do so indirectly by
placing a prior on 6
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Bayesian Non-Linear Regression

® Prior knowledge: data Y are noisy measurements of a non-linear
function fs(z) = ¢(2)" 0 at points X=(X1,...,Xn)"

We are uncertain about the function, so as Bayesian we put a
prior on the space of functions with this basis. Again, we do so
indirectly by placing a prior on the coefficients 6

Model:

YIX,0 ~ N (gb(X)@, afl) . O~ N(O0,))

Then:
Omar(Y1X) = o(X) " (K(X, X) +021)"Y

Estimated function?

fuap(x) = ¢(x)0mar( Y|X)
= d(X)(X) (KX, X) +o21)7"Y
A

= K(x, X)(K(X, X) + 5/)—1 Y

— fr15(X) Charlie Frogner




Bayesian Non-Linear Regression (cont.)

Prior knowledge: data Y are noisy measurements of a non-linear
function fs(z) = ¢(z)" 0 at points X=(xa,...,Xn)T

We are uncertain about the function, so as Bayesian we put a
prior on the space of functions with this basis. Again, we do so
indirectly by placing a prior on the coefficients 6

Posterior:

Y*IX, Y ~ N (pyex,vs Zy«|x.y)

where

py=x,y = tys + K(X5 X)KX X + 027N (Y = py)
Tyaxy = K(X*, X*) — K(X*, X)(K(X, X) + o°1) 7 K(X, X*)

Charlie Frogner



Samples from Gaussian processes with different K(x,z’)
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Prediction using GPs with different K (z,x")

A sample from the prior for each covariance function:

Corresponding predictions, mean with two standard deviations:
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Squared Exponential (RBF) Kernel

| | . 1 (o — 2 2
K(x, 2"y = oy?exp |—
(a2t ol I [ 2( X ) }

e [ntuition: function variables close in input space are highly
correlated, whilst those far away are uncorrelated

e \ oy — hyperparameters. \: lengthscale, oy: amplitude
e Stationary: K(x,2') = K(x — 2’) — invariant to translations

e Very smooth sample functions — infinitely differentiable

by Carl Rasmussen




Nonstationary Covariances

e Linear covariance: K(x,2') = 02 + a2’

e Brownian motion (Wiener process): K (x.2') = min(x, x')

!

. . . . Qraing(‘ —
e Periodic covariance: K(x,2') = e}:p(— o~ ))

,}Hﬁ

by Carl Rasmussen




/N

Qo

U
—_ — N D
Ol = N O = W

~ o

VRS

~ o

S

_
o,

~ o

@

~—~
Y

~ o

e
a3

= min{¢, '} (Brownian motion, ¢;(x) = 1(x € [0,]), hence f = fg B(x) dz, where B(x) is white noise)
(tt')? + (¢, t'), where 6(¢,t') = 1 if t = t/, 0 otherwise.
(tt')? +46(t,t'), same as 2 (quadratic trend) but much noisier

L
1000
L
1000

) + 0.8tt, second term adds linear trend

" cos (n(t —t')), first several Fourier basis.

3 _
Zn:() €




Which kernel?

The previous model expressed no uncertainty in the basis ¢(x)
or equivalently no uncertainty in the kernel.

Concrete example: what degree polynomial should we fit to the
data?

K(wi25) = @y + 1™




Model structure and overfitting:
A simple example: polynomial regression
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Bayesian Occam’s Razor and Model Comparison

Compare model classes, e.g. m and m/, using posterior probabilities given D:

pmfD) = " (Dln) = [ p(Dl6,m) p(6im) de

Interpretation of the Marginal Likelihood (“evidence”): The probability that
randomly selected parameters from the prior would generate D.

A

Model classes that are too simple are
unlikely to generate the data set.

Model classes that are too complex can
generate many possible data sets, so
again, they are unlikely to generate that
particular data set at random.

: "just right"

D

All possible data sets of size n

Zoubin Ghahramani




Bayesian Model Comparison: Occam’s Razor at Work

Model Evidence

| ; |
log plv|x, M;) y r— —log |K| — 7 log(2m)

Zoubin Ghahramani; Carl Rasmussen




Non-parametric Bayesian Models

Bayesian methods are most powerful when your prior adequately captures your
beliefs.

Inflexible models (e.g. mixture of 5 Gaussians, 4th order polynomial) yield
unreasonable inferences.

Non-parametric models are a way of getting very flexible models.

Many can be derived by starting with a finite parametric model and taking the
limit as number of parameters — oo

Non-parametric models can automatically infer an adequate model
size/complexity from the data, without needing to explicitly do Bayesian model
comparison.’

2Even if you believe there are infinitely many possible clusters, you can still infer how many clusters are represented
in a finite set of n data points.
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Nonparametric Bayesian Methods (Infinite Models)

We ought not to limit the complexity of our model a priori (e.g. number of hidden
states, number of basis functions, number of mixture components, etc) since we
don’t believe that the real data was actually generated from a statistical model with
a small number of parameters.

Therefore, regardless of how much training data we have, we should consider models
with as many parameters as we can handle computationally.

Here there i1s no model order selection task:

e No need to compare marginal likelihoods to select model order (which is often
difficult).

e No need to use Occam’s razor to limit the number of parameters in the model.

In fact, we may even want to consider doing inference in models with an infinite
number of parameters...

Zoubin Ghahramani




Why Bayesian Nonparametrics?

® Finite-dimensional models are low-dimensional manifolds in
probability space

® \We want distributions with (nearly) full support




Nonparametric models as limits

® |ook at putting priors directly on infinite dimensional RKHS

® Start with D component Fourier model

D
y(x) = ag + Z agqsin(dzx) + by cos(dx),
d=1

g D
.,ap,bp}.  p(w|S,c) x exp (— 5 [coag + E ca(ag + bz)}),
d=1

D

K(z,z') = [Zcos( (z — ))/cd]/

d=0

Rasmussen&Ghahramani NIPS*200



Still finite, but something amiss

Scaling Exponent=0 Scaling Exponent=2 Scaling Exponent=3 Scaling Exponent=4

o RN

-2 0 2 -2 0 2

Figure 3. Functions drawn at random from the Fourier model with order D = 6 (dark)
and D = 500 (light) for four different scalings; limiting behaviour from left to right:
discontinuous, Brownian, borderline smooth, smooth.




Parameter scales fixed; model size increasing

Order 1 Order 2 Order 3 Order 4 Order 5

Order 7 Order 8 Order 9 Order 10 Order 11

"

5 6
Model order

Figure 2: Top: 12 different model orders for the “unscaled” model: ¢4 o 1. The mean
predictions are shown with a full line, the dashed and dotted lines limit the 50% and 95%
central mass of the predictive distribution (which is student-¢). Bottom: posterior probabil-
ity of the models, normalised over the 12 models. The probabilities of the models exhibit
an Occam’s Hill, discouraging models that are either “too small” or “too big”.

Rasmussen&Ghahramani NIPS*200




Scaling the parameters with model size

Order 0 Order 1 Order 2 Order 3

0 0 1
Order 9 Order 10 Order 11

5 6
Model order

Figure 4: The same as figure 2, except that the scaling ¢4 = d° was used here, leading to a
prior which converges to smooth functions as D — oco. There is no Occam’s Razor; instead
we see that as long as the model is complex enough, the evidence is flat. We also notice
that the predictive density of the model is unchanged as long as D is sufficiently large.

Rasmussen&Ghahramani NIPS*200




Scaling the parameters with model size

E[(f(z) - f(z +A))7],

log Evidence (D=200, max=-27.48)
T T T T T -27
-27.5
-28
, lima 0 G(A)

1-28.5
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1 discontinuous
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Figure 5: Left panel: the evidence as a function of the scaling exponent,y and overall scale
(', has a maximum at v = 3. The table shows the characteristics of functions for different
values of . Examples of these functions are shown in figure 3.

scaling exponent
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Scaling the parameters with model size

Order 0 Order 1 Order 2 Order 3 Order 4 Order 5
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Figure 2: Top: 12 different model orders for the “unscaled” model: ¢4 o 1. The mean
predictions are shown with a full line, the dashed and dotted lines limit the 50% and 95%
central mass of the predictive distribution (which is student-¢). Bottom: posterior probabil- 51 - 1
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Figure 5: Left panel: the evidence as a function of the scaling exponent, v and overall scale
C, has a maximum at v = 3. The table shows the characteristics of functions for different

values of v. Examples of these functions are shown in figure 3.

Figure 3: Functions drawn at random from the Fourier model with order D = 6 (dark)

and D = 500 (light) for four different scalings; limiting behaviour from left to right: Rasmussen & G hah I"amani N I PS*ZOO I
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The GP Bible (for ML folk)

all the chapters
are available online!

The GP book: Rasmussen and Williams, 2006

Basic GP (Matlab) code available:
http://www.gaussianprocess.org/gpml/

Moghaddam



Take-home

® |[nference in Nonparametric models does not require model
selection as there are an infinite number of parameters to fit

® Nonparametric models essentially turn a structure learning
problem (how many components) into a parameter estimation
problem

® Gaussian Processes are a fully Bayesian alternative to RLS
Provides error bars on predictions; marginal likelihood tractable
Structure in the kernel induces structure in the output
Kernel composition laws provide a rich space of models
Cubic/training, linear/test performance

® A Bayesian machine learning approach explicitly models
uncertainty by treating unknown variables as random
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