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The Plan

Regularized least squares maps {(xi , yi)}n
i=1 to a function that

minimizes the regularized loss:

fS = arg min
f∈H

1
2

n
∑

i=1

(yi − f (xi))
2 +

λ

2
‖f‖2

H

Can we justify Tikhonov regularization from a probabilistic point
of view?
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The Plan

Bayesian estimation basics

Bayesian interpretation of ERM

Bayesian interpretation of linear RLS

Bayesian interpretation of kernel RLS

Transductive model

Infinite dimensions = weird
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Some notation

S = {(xi , yi)}n
i=1 is the set of observed input/output pairs in

R
d × R (the training set).

X and Y denote the matrices [x1, . . . , xn]T ∈ R
n×d and

[y1, . . . , yn]T ∈ R
n, respectively.

θ is a vector of parameters in R
p.

p(Y |X , θ) is the joint distribution over outputs Y given
inputs X and the parameters.
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Estimation

The setup:

A model: relates observed quantities (α) to an unobserved
quantity (say β).

Want: an estimator – maps observed data α back to an
estimate of unobserved β.

Nothing new yet...

Estimator

β ∈ B is unobserved, α ∈ A is observed. An estimator for β is a
function

β̂ : A → B

such that β̂(α) is an estimate of β given an observation α.
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Estimation

Tikhonov fits in the estimation framework.

fS = arg min
f∈H

1
2

n
∑

i=1

(yi − f (xi))
2 +

λ

2
‖f‖2

H

Regression model:

yi = f (xi) + ε, ε ∼ N
(

0, σ2
ε I

)
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Bayesian Estimation

Difference: Bayesian model specifies p(β, α) , usually by a
measurement model, p(α|β) and a prior p(β).

Bayesian model

β is unobserved, α is observed.

p(β, α) = p(α|β) · p(β)
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ERM as a Maximum Likelihood Estimator

(Linear) Expected risk minimization:

fS(x) = xT θ̂ERM(S), θ̂ERM(S) = arg min
θ

1
2

n
∑

i=1

(yi − xT
i θ)

2

Measurement model:

Y |X , θ ∼ N
(

Xθ, σ2
ε I

)

X fixed/non-random, θ is unknown.
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ERM as a Maximum Likelihood Estimator

Measurement model:

Y |X , θ ∼ N
(

Xθ, σ2
ε I

)

Want to estimate θ.

Can do this without defining a prior on θ.

Maximize the likelihood, i.e. the probability of the
observations.

Likelihood

The likelihood of any fixed parameter vector θ is:

L(θ|X ) = p(Y |X , θ)

Note: we always condition on X .
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ERM as a Maximum Likelihood Estimator

Measurement model:

Y |X , θ ∼ N
(

Xθ, σ2
ε I

)

Likelihood:

L(θ|X ) = N
(

Y ; Xθ, σ2
ε I

)

∝ exp
(

− 1
2σ2

ε

‖Y − Xθ‖2
)

Maximum likelihood estimator is ERM:

arg min
θ

1
2
‖Y − Xθ‖2
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Really?

1
2
‖Y − Xθ‖2
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Really?

e
− 1

2σ2
ε

‖Y−Xθ‖2
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What about regularization?

Linear regularized least squares:

fS(x) = xT θ, θ̂RLS(S) = arg min
θ

1
2

n
∑

i=1

(yi − xT
i θ)

2 +
λ

2
‖θ‖2

Is there a model of Y and θ that yields linear RLS?

Yes.

e
− 1

2σ2
ε

(
n

∑

i=1
(yi−xT

i θ)2+ λ

2 ‖θ‖
2)

p(Y |X , θ) · p(θ)
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2
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Linear RLS as a MAP estimator

Measurement model:

Y |X , θ ∼ N
(

Xθ, σ2
ε I

)

Add a prior:
θ ∼ N (0, I)

So σ2
ε = λ. How to estimate θ?
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The Bayesian method

Take p(Y |X , θ) and p(θ).

Apply Bayes’ rule to get posterior:

p(θ|X ,Y ) =
p(Y |X , θ) · p(θ)

p(Y |X )

=
p(Y |X , θ) · p(θ)
∫

p(Y |X , θ)dθ

Use the posterior to estimate θ.
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Estimators that use the posterior

Bayes least squares estimator

The Bayes least squares estimator for θ given the observed Y
is:

θ̂BLS(Y |X ) = Eθ|X ,Y [θ]

i.e. the mean of the posterior.

Maximum a posteriori estimator

The MAP estimator for θ given the observed Y is:

θ̂MAP(Y |X ) = arg max
θ

p(θ|X ,Y )

i.e. a mode of the posterior.
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Linear RLS as a MAP estimator

Model:
Y |X , θ ∼ N

(

Xθ, σ2
ε I

)

, θ ∼ N (0, I)

Joint over Y and θ:
[

Y |X
θ

]

∼ N
([

0
0

]

,

[

XX T + σ2
ε I X

X T I

])

Condition on Y |X .
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Linear RLS as a MAP estimator

Model:
Y |X , θ ∼ N

(

Xθ, σ2
ε I

)

, θ ∼ N (0, I)

Posterior:
θ|X ,Y ∼ N

(

µθ|X ,Y ,Σθ|X ,Y
)

where

µθ|X ,Y = X T (XX T + σ2
ε I)−1Y

Σθ|X ,Y = I − X T (XX T + σ2
ε I)−1X

This is Gaussian, so

θ̂MAP(Y |X ) = θ̂BLS(Y |X ) = X T (XX T + σ2
ε I)−1Y
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Linear RLS as a MAP estimator

Model:
Y |X , θ ∼ N

(

Xθ, σ2
ε I

)

, θ ∼ N (0, I)

θ̂MAP(Y |X ) = X T (XX T + σ2
ε I)−1Y

Recall the linear RLS solution:

θ̂RLS(Y |X ) = arg min
θ

1
2

n
∑

i=1

(yi − xT
i θ)

2 +
λ

2
‖θ‖2

= X T (XX T +
λ

2
I)−1Y

How do we write the estimated function?
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What about Kernel RLS?

We can use basically the same trick to derive kernel RLS;

fS = arg min
f∈HK

1
2

n
∑

i=1

(yi − f (xi ))
2 +

λ

2
‖f‖2

HK

How?

Feature space: f (x) = 〈θ, φ(x)〉F

e
− 1

2 (
n

∑

i=1
(yi−φ(xi )

T θ)2+ λ

2 θT θ)

Feature space must be finite-dimensional.
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More notation

φ(X ) = [φ(x1), . . . , φ(xn)]T

K (X ,X ) is the kernel matrix: [K (X ,X )]ij = K (xi , xj)

K (x ,X ) = [K (x , x1), . . . ,K (x , xn)]

f (X ) = [f (x1), . . . , f (xn)]T
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What about Kernel RLS?

Model:

Y |X , θ ∼ N
(

φ(X )θ, σ2
ε I

)

, θ ∼ N (0, I)

Then:

θ̂MAP(Y |X ) = φ(X )T (φ(X )φ(X )T + σ2
ε I)−1Y

What is φ(X )φ(X )T ?

It’s K (X ,X ).
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What about Kernel RLS?

Model:

Y |X , θ ∼ N
(

φ(X )θ, σ2
ε I

)

, θ ∼ N (0, I)

Then:
θ̂MAP(Y |X ) = φ(X )T (K (X ,X ) + σ2

ε I)−1Y

Estimated function?

f̂MAP(x) = φ(x)θ̂MAP(Y |X )

= φ(x)φ(X )T (K (X ,X ) + σ2
ε I)−1Y

= K (x ,X )(K (X ,X ) +
λ

2
I)−1Y

= f̂RLS(x)
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A prior over functions

Model:

Y |X , θ ∼ N
(

φ(X )θ, σ2
ε I

)

, θ ∼ N (0, I)

Can we write this as a prior on HK ?
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A prior over functions

Remember Mercer’s theorem:

K (xi , xj) =
∑

k

νkψk (xi)ψk (xj)

where νkψk (·) =
∫

K (·, y)ψk (y)dy for all k . The functions
{√νkψk (·)} form an orthonormal basis for HK .

Let φ(·) = [
√
ν1ψ1(·), . . . ,√νpψp(·)]. Then:

HK = {θTφ(·)|θ ∈ R
p}
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A prior over functions

We showed: when θ ∼ N (0, I),

f̂MAP(·) = θ̂MAP(Y |X )Tφ(·) = f̂RLS(·)

Taking φ(·) = [
√
ν1ψ1, . . . ,

√
νpψp], this prior is equivalently:

f (·) = θTφ(·) ∼ N (0, I)

i.e. the functions in HK are Gaussian distributed:

p(f ) ∝ exp
(

−1
2
‖f‖2

HK

)

= exp
(

−1
2
θT θ

)

Note: again we need HK to be finite-dimensional.
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A prior over functions

So:

p(f ) ∝ exp
(

−1
2
‖f‖2

HK

)

⇔ θ ∼ N (0, I) ⇒ f̂MAP = f̂RLS

Assuming p(f ) ∝ exp(−1
2‖f‖2

HK
),

p (f |X ,Y ) =
p (Y |X , f ) · p(f )

p (Y |X )

∝ exp
(

−1
2
‖Y − f (X )‖2

)

exp
(

−1
2
‖f‖2

)

= exp
(

−1
2
‖Y − f (X )‖2 − 1

2
‖f‖2

)
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A quick recap

We wanted to know if RLS has a probabilistic interpretation.
Empirical risk minimization is ML.

p(Y |X , θ) ∝ e− 1
2‖Y−Xθ‖2

Linear RLS is MAP.

p(Y , θ|X ) ∝ e− 1
2‖Y−Xθ‖2 · e−λ

2 θT θ

Kernel RLS is also MAP.

p(Y , θ|X ) ∝ e− 1
2‖Y−φ(X)θ‖2 · e−λ

2 θT θ

Equivalent to a Gaussian prior on HK :

p(Y , θ|X ) ∝ e− 1
2‖Y−f (X)‖2 · e−λ

2 ‖f‖2
HK

But these don’t work for infinite dimensional function spaces...
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Transductive setting

We hinted at problems if dimHK = ∞.

Idea: Forget about estimating θ (i.e. f ).

Instead: Estimate predicted outputs

Y ∗ = [y∗
1 , . . . , y

∗
M ]T

at test inputs
X ∗ = [x∗

1 , . . . , x
∗
M ]T

Need the joint distribution over Y ∗ and Y .
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Transductive setting

Say Y ∗ and Y are jointly Gaussian:
[

Y
Y ∗

]

= N
([

µY

µY∗

]

,

[

ΛY ΛYY∗

ΛY∗Y ΛY∗

])

Want: kernel RLS.

General form for the posterior:

Y ∗|X ,Y ∼ N
(

µY∗|X ,Y ,ΣY∗|X ,Y
)

where

µY∗|X ,Y = µY∗ + ΛT
YY∗Λ−1

Y (Y − µY )

ΣY∗|X ,Y = ΛY∗ − ΛT
YY∗Λ−1

Y ΛYY∗
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Transductive setting

Set ΛY = K (X ,X ) + σ2I, ΛYY∗ = K (X ,X ∗), ΛY∗ = K (X ∗,X ∗).

Posterior:
Y ∗|X ,Y ∼ N

(

µY∗|X ,Y ,ΣY∗|X ,Y
)

where

µY∗|X ,Y = µY∗ + K (X ∗,X )(K (X ,X + σ2I)−1(Y − µY )

ΣY∗|X ,Y = K (X ∗,X ∗) − K (X ∗,X )(K (X ,X ) + σ2I)−1K (X ,X ∗)

So: Ŷ ∗
MAP = f̂RLS(X ∗).
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Transductive setting

Model:
[

Y
Y ∗

]

= N
([

µY

µY∗

]

,

[

K (X ,X ) + σ2
ε I K (X ,X ∗)

K (X ∗,X ) K (X ∗,X ∗)

])

MAP estimate (posterior mean) = RLS function at every point
x∗, regardless of dimHK .

Are the prior and posterior (on points!) consistent with a
distribution on HK ?
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Transductive setting

Strictly speaking, θ and f don’t come into play here at all:

Have: p(Y ∗|X ,Y )
Do not have: p(θ|X ,Y ) or p(f |X ,Y )

But, if HK is finite dimensional, the joint over Y and Y ∗ is
consistent with:

Y = f (X ) + ε,

Y ∗ = f (X ), and

f ∈ HK is a random trajectory from a Gaussian process
over the domain, with mean µ and covariance K .

(Ergo, people call this “Gaussian process regression.”)
(Also “Kriging,” because of a guy.)
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Recap redux

Empirical risk minimization is the maximum likelihood
estimator when:

y = xT θ + ε

Linear RLS is the MAP estimator when:

y = xT θ + ε, θ ∼ N (0, I)

Kernel RLS is the MAP estimator when:

y = φ(x)T θ + ε, θ ∼ N (0, I)

in finite dimensional HK .
Kernel RLS is the MAP estimator at points when:
[

Y
Y ∗

]

= N
([

µY

µY∗

]

,

[

K (X ,X ) + σ2
ε I K (X ,X ∗)

K (X ∗,X ) K (X ∗,X ∗)

])

in possibly infinite dimensional HK .
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Is this useful in practice?

Want confidence intervals + believe the posteriors are
meaningful = yes

Maybe other reasons?
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What is going on with infinite-dimensional HK ?

Wrote down statements like: θ ∼ N (0, I) and f ∼ N (0, I).
The space HK can be written

HK = {f : ‖f‖2
HK

<∞} = {θTφ(·) :

∞
∑

i=1

θ2
i <∞}

Difference between finite and infinite: not every θ yields a
function θTφ(·) in HK .

A hint: θ ∼ N (0, I) ⇒ E‖θTφ(·)‖2
HK

= ∞.
In fact: θ ∼ N (0, I) ⇒ θTφ(·) ∈ HK with probability zero.

So be careful out there.
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A hint that things are amiss

Assume: θ ∼ N (0, I), {φi}∞i=1 orthonormal basis in HK .

E‖θTφ‖2
HK

= E‖
∞

∑

i=1

θiφi‖2
HK

= E

∞
∑

i=1

θ2
i

=

∞
∑

i=1

1

= ∞
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