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Learning: Brains and Machines

Learning is the gateway to 
understanding the brain and to 
making intelligent machines. 

Problem of learning: 
a focus for 

o

 

modern math
o

 

computer algorithms
o

 

neuroscience



Learning: much more than memory

•
 

Role of learning (theory and applications in many different 
domains) has grown substantially in CS: learning+statistics

 
is 

becoming a lingua franca in CS

•
 

Plasticity and learning increasingly have a central stage in the 
neurosciences

•
 

Until now math and engineering of learning has developed 
independently of neuroscience…but it may begin to change as  
we will see in the class.



Learning theory
+ algorithms

Computational
Neuroscience: 

models+experiments

ENGINEERING 
APPLICATIONS

• Bioinformatics
• Computer vision
•

 

Computer graphics, speech     
synthesis, creating a virtual actor

How visual cortex works –

 

and how it 
may suggest better computer vision 
systems

Learning:
 math, engineering, neuroscience
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Theorems on foundations of learning:

Predictive algorithms



Learning theory
+ 

algorithms

Computational
Neuroscience: 

models+experiments

ENGINEERING 
APPLICATIONS

How visual cortex works:

Deep Learning in Cortex 

Learning: 
math, engineering, neuroscience (now)
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Theorems on foundations of learning

Predictive algorithms
(Regularization networks ~ SMS…)

• Bioinformatics
• Computer vision 
•

 

Computer graphics, speech     
synthesis
• Speech recognition



Math Camp? Look at old Mathcamps on Web site: 
we will decide on Monday

Functional Analysis:
Linear and Euclidean spaces
scalar product, orthogonality
orthonormal bases, norms and semi-norms,
Cauchy sequence and complete spaces
Hilbert spaces, function spaces 
and linear functional, Riesz representation 
theorem, convex functions,  functional calculus.

Probability Theory:
Random Variables (and related 
concepts),  Law of Large Numbers, 
Probabilistic Convergence, 
Concentration  Inequalities.

Linear Algebra
Basic notion and definitions: matrix and 
vectors norms, positive, symmetric, 
invertible  matrices, linear systems, 
condition number.

&  Multivariate Calculus:
Extremal problems,  differential, gradient.



9.520 Statistical Learning Theory and Applications (2007) 
Class 26: Project presentations (past examples)

10:30    -

 

Simon Laflamme

 

“Online Learning Algorithm for Structural Control using 
Magnetorheological

 

Actuators”

-

 

Emily Shen

 

“Time series prediction”

-

 

Zak Stone “Facebook

 

project”

-

 

Jeff Miller “Clustering features in the standard model of cortex”

-

 

Manuel Rivas "Learning Age from Gene Expression Data“

-

 

Demba

 

Ba

 

“Sparse Approximation of the Spectrogram via Matching Pursuits:

 
Applications to Speech Analysis”

-

 

Nikon Rasumov

 

"Data mining in controlled environment and real data"



9.520 Statistical Learning Theory and Applications  
Class 26: Project presentations (past examples)

2:35-2:50 "Learning card playing strategies with SVMs", David 
Craft and Timothy Chan

2:50-3:00 "Artificial Markets: Learning to trade using Support 
Vector Machines“, Adlar

 
Kim

3:00-3:10 "Feature selection: literature review and new 
development'‘, Wei Wu

3:10—3:25 "Man vs
 

machines: A computational study on face 
detection" Thomas Serre



Project suggestions

We will provide some in the next few classes and we will 
speak more about them just before spring break



Overview of overview

o  o  The problem of sThe problem of supervised learning: “real”
 

math 
behind it

o   Examples of engineering applications (from our 
group)

o   Learning and the brain Learning and the brain 



Reason to learn some learning theory

bf += wxx)(

Applications cannot be carried out by simply using a black box. 

What is needed: the right formulation of the problem (which is 
helped by knowledge of theory): choice of representation (inputs, 
outputs), choice of examples, validate predictivity, do not 
datamine

…



Notes

Two connected and overlapping strands in learning theory:

Bayes, hierarchical models, graphical models…

Statistical learning theory, regularization (closer to classical 
math, functional analysis+probability theory+empirical process 

theory…)



Interesting development: Interesting development: 
in the last few years he theoretical foundations of learning in the last few years he theoretical foundations of learning 

have become part of mainstream mathematics:have become part of mainstream mathematics:
L. L. Valiant,VValiant,V. . VapnikVapnik, S. , S. SmaleSmale, I. , I. DaubechieDaubechie

 
et al.et al.



Learning from examples: goal is not to memorize but to 
generalize, eg predict.

INPUT OUTPUTf
Given Given a set of a set of ll examples (data)examples (data)

QuestionQuestion: find function : find function ff such that such that 

is a is a good predictorgood predictor of of yy for a for a futurefuture input input x (fitting the data is x (fitting the data is not not 
enough!):enough!):

yxf ˆ)( =

{ }),(...,,),(),,( 2211 ll yxyxyx



Binary classification case

(1,13,(1,13,……))

(92,10,(92,10,……))
(41,11,(41,11,……))

(19,3,(19,3,……))

(4,24,(4,24,……))
(7,33,(7,33,……))

(4,71,(4,71,……))

decision  decision  
boundaryboundary

High dim. High dim. 
spacespace



y

x

=

 

data from f

=

 

approximation of   f
= function f

Generalization:  
estimating value of function where there are no data (good generalization means 
predicting the function well; most important is for empirical or validation error to 
be a good proxy of the prediction error)

Regression:      function is real valued

Classification:   function is binary

Learning from examples: predictive, multivariate 
function regression from data 

(not just curve fitting) 





A key requirement for learning: generalization

An informal definition of generalization is to find a model that
 predicts well new

 
data 

Example:
A prototypical algorithm is ERM (empirical risk minimization) 

What are the conditions ensuring generalization?

We need a more formal definition…



Definitions 



The problem does not have a predictive solution in general 
(just fitting the data does not work). 

Choosing an appropriate hypothesis space H (for instance a 
compact set of continuous functions) can guarantee 
generalization (how good depends on the problem and other 
parameters) (Vapnik,…)

Control of complexity 



J. S. Hadamard, 1865-1963

A problem is well-posed if its solution

exists, unique and 

is stable, eg
 

depends continuously on the data 
(here examples) 

A superficially different requirement for learning is 
well-posedness

 

of the associated optimization problem



Well-posedness and generalization: are they related?

It is possible to show that under quite general assumptions 

generalization and well-posedness

 

are equivalent, eg

 

one implies the other. 

Stability implies generalization:

a stable solution is  predictive and (for ERM) also  viceversa.

ERM ERM

H is   
u GC

ERM

CVloo
stability

For general
symmetric 
algorithms

Generalization
Generalization
+ consistency

Eloo+EEloo

 
stability

ERM

Mukherjee, S., P. Niyogi, T. Poggio

 

and R. Rifkin. Learning Theory: Stability is Sufficient for Generalization and Necessary and Sufficient for Consistency of 
Empirical Risk Minimization, Advances in Computational Mathematics, 25, 161-193, 2006; see also Nature, 2005

http://cbcl.mit.edu/projects/cbcl/publications/ps/mukherjee-ACM-06.pdf
http://cbcl.mit.edu/projects/cbcl/publications/ps/mukherjee-ACM-06.pdf


This is an example of foundational results 
in learning theory...



Learning theory and natural sciences

Conditions for generalization
 

in learning theory

have deep, almost philosophical, implications:

they may be regarded as conditions that guarantee a 
theory

 
to be predictive (that is scientific) 



Regularization in RKHS: 
a simple algorithm which generalizes well (it is uniformly stable) 

and is computationally tractable

For a review, see Poggio and Smale, The Mathematics of Learning, 
Notices of the AMS, 2003

Equation includes splines, Radial Basis Functions and 
Support Vector Machines (depending on choice of V). 
RKHS were explicitly introduced in learning theory by Girosi

 

(1997), Vapnik

 

(1998).
Moody and Darken (1989), and Broomhead

 

and Lowe (1988) introduced RBF to learning theory. 
Poggio

 

and Girosi

 

(1989) introduced Tikhonov

 

regularization in learning theory and worked 
(implicitly) with RKHS. RKHS were used earlier in approximation theory (eg

 

Parzen, 1952-1970, 
Wahba, 1990).
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can be “written” as  shallow networks
(for many different V): the value of K 
corresponds to the “activity” of the 
“unit” for the input and the     correspond 
to “weights”

“Classical” kernel machines are equivalent to 
(shallow) networks
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Winning against the curse of dimensionality: 
new research directions in learning

Many processes -

 

physical processes as well as human activities  –

 

generate 
high-dimensional data: curse of dimensionality or poverty of stimulus. 

There are, however, basic properties of the data generating process that may 
allow to circumvent the problem of high dimensionality and make the analysis 
possible:

• smoothness

 

-

 

exploited by L2 regularization techniques
• sparsity

 

-

 

exploited by L1 regularization techniques
• data geometry

 

-

 

exploited by manifold learning techniques
• hierarchical organization

 

–

 

suggested by the architecture of sensory cortex
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New Research Directions





Overview 

o  o  Supervised learning: real mathSupervised learning: real math

o  Examples of recent and ongoing ino  Examples of recent and ongoing in--house engineering house engineering 
applicationsapplications



Overview of overview

o  o  The problem of sThe problem of supervised learning: “real”
 

math 
behind it

o   Examples of engineering applications (from our 
group)

o   Learning and the brain Learning and the brain 



Learning from Examples: 
engineering applications

Computer Vision
•

 

Face detection
•

 

Pedestrian detection
•

 

Scene understanding
•

 

Video categorization
Decoding the Neural Code
Bioinformatics
Graphics
Text Classification
Artificial Markets
…..

INPUTINPUT OUTPUTOUTPUT



Object recognition for computer vision: 
(personal) historical perspective
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Learning from Examples: 
engineering applications

Computer Vision
•

 

Face detection
•

 

Pedestrian detection
•

 

Scene understanding
•

 

Video categorization
Decoding the Neural Code
Bioinformatics
Graphics
Text Classification
Artificial Markets
…..

INPUTINPUT OUTPUTOUTPUT



Learning Object Detection: 
Finding Frontal Faces ...

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern

Sung, Poggio

 

1995



Learning Face Detection

Sung, Poggio
1994



Face detection:…



Learning from Examples: 
engineering applications

Computer Vision
•

 

Face detection
•

 

Pedestrian detection
•

 

Scene understanding
•

 

Video categorization
Decoding the Neural Code
Bioinformatics
Graphics
Text Classification
Artificial Markets
…..

INPUTINPUT OUTPUTOUTPUT



Trainable System for  Object Detection: 
Pedestrian detection -

 
Results

Papageorgiou

 

and Poggio, 1998



We did well with shallow learning architectures (SVMs): 
~10 year old CBCL computer vision work: 

SVM-based pedestrian detection system  in 
Mercedes test car… 

now becoming a product (MobilEye, Israeli company)






Remark: training set defines task 
People classification/detection

Representation: overcomplete dictionary of Haar wavelets;  high
dimensional feature space (>1300 features)

. . . . . .

pedestrian detection
 

system 

Core learning algorithm:
Support Vector Machine
classifier

1848 patterns 7189 patterns



Representation: grey levels (normalized) or overcomplete 
dictionary of Haar wavelets

. . . . . .

face detection
 

system 

Core learning algorithm:
Support Vector Machine
classifier

Remark: training set defines task 
Face detection



Representation: grey levels (normalized) or overcomplete 
dictionary of Haar wavelets

. . . . . .

face identification
 

system 

Core learning algorithm:
Support Vector Machine
classifier

Remark: training set defines task 
Face identification



Learning from Examples: 
engineering applications

Computer Vision
•

 

Face detection
•

 

Pedestrian detection
•

 

Scene understanding
•

 

Video categorization
Decoding the Neural Code
Bioinformatics
Graphics
Text Classification
Artificial Markets
…..

INPUTINPUT OUTPUTOUTPUT



Source: Bileschi, Wolf & Poggio

The street scene project



StreetScenes Database. Subjective Results

Results 



•

 

HoG:                      
(Dalal & Triggs 2005) 

•

 

Part-based system: 
(Leibe et al 2004) 

•

 

Local patch correlation:     
(Torralba et al 2004) 

Serre Wolf Bileschi

 

Riesenhuber & Poggio PAMI 2007



Serre Wolf Bileschi

 

Riesenhuber & Poggio PAMI 2007



Learning from Examples: 
engineering applications

Computer Vision
•

 

Face detection
•

 

Pedestrian detection
•

 

Scene understanding
•

 

Video categorization
Decoding the Neural Code
Bioinformatics
Graphics
Text Classification
Artificial Markets
…..

INPUTINPUT OUTPUTOUTPUT



The problem: action recognition
Training Videos Testing videos

*each video~4s, 50~100 frames

bend jack jump

jump run walk

side wave1 wave2

Dataset from (Blank et al, 2005)




A new model of the dorsal stream (motion) 
following the ventral stream model 

ventral stream

dorsal stream

dorsal 
stream

ventral 
stream

Adapted from (Merigan

 

& Maunsell, 1993; Maunsell

 

& Newsome 1987)

selectivity

invariance

Unsupervised learning in MT (S2) from natural video sequences 



Using a large dictionary of MT-like units for 
action recognition works well!

(Dolllar et al. 
2005) model chance

KTH Human 81.3% 91.6% 16.7%

UCSD Mice 75.6% 79.0% 20.0%

Weiz. Human 86.7% 96.3% 11.1%

� Cross-validation: 2/3  training, 1/3 testing, 10 repeats 
� Source code for benchmark graciously provided by Piotr Dollar (Jhuang Serre Wolf & Poggio ICCV 

2007)






Learning from Examples: 
engineering applications

Computer Vision
•

 

Face detection
•

 

Pedestrian detection
•

 

Scene understanding
•

 

Video categorization
Decoding the Neural Code
Bioinformatics
Graphics
Text Classification
Artificial Markets
…..

INPUTINPUT OUTPUTOUTPUT



Can we “read-out”

 

from visual cortex what the monkey sees?



The end station of the ventral stream 
in visual cortex is IT



77 objects, 
8 classes

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso

 

Poggio, Science, Nov 4, 2005

Reading-out the neural code in AIT



Example of one AIT cell



Training a classifier on neuronal 
activity.

INPUT OUTPUTf
From a set of data (vectors of activity of n neurons (x)  and obFrom a set of data (vectors of activity of n neurons (x)  and object label (y)ject label (y)

Find (by training) a classifier Find (by training) a classifier egeg

 

a function a function ff such that such that 

is a is a good predictorgood predictor of object label of object label yy for a for a futurefuture neuronal activity neuronal activity xx

yxf ˆ)( =

{ }),(...,,),(),,( 2211 ll yxyxyx



Categorization

•

 

Toy

•

 

Body

•

 

Human Face

•

 

Monkey Face

•

 

Vehicle

•

 

Food

•

 

Box

•

 

Cat/Dog

Video speed: 1 
frame/sec

Actual presentation 
rate: 5 objects/sec Neuronal population 

activity

Classifier prediction

Hung, Kreiman, Poggio, DiCarlo. Science 2005

We can decode the brain’s code and read-out from neuronal populations: 
reliable object categorization (>90% correct) using ~200 arbitrary AIT “neurons”




Learning from Examples: 
engineering applications

Computer Vision
•

 

Face detection
•

 

Pedestrian detection
•

 

Scene understanding
•

 

Video categorization
Decoding the Neural Code
Bioinformatics
Graphics
Text Classification
Artificial Markets
…..

INPUTINPUT OUTPUTOUTPUT



Learning from examples paradigm

Examples

Prediction  Statistical Learning 
Algorithm

Prediction

New sample

Bioinformatics application: predicting type of 
cancer from DNA chips signals



Bioinformatics application: predicting type of 
cancer from DNA chips

New feature selection SVM:

Only 38 training examples, 7100 features

AML vs

 

ALL: 40 genes 34/34 correct, 0 rejects.
5 genes 31/31 correct, 3 rejects of which 1 is an error.

Pomeroy, S.L., P. Tamayo, M. Gaasenbeek, L.M. Sturia, M. Angelo, M.E. 
McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. 
Zagzag, M.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S. 
Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. 
Lander and T.R. Golub. Prediction of Central Nervous System Embryonal

 

Tumour

 

Outcome Based on Gene Expression, Nature, 2002. 



Learning from Examples: 
engineering applications

Computer Vision
•

 

Face detection
•

 

Pedestrian detection
•

 

Scene understanding
•

 

Video categorization
Decoding the Neural Code
Bioinformatics
Graphics
Text Classification
Artificial Markets
…..

INPUTINPUT OUTPUTOUTPUT



Image Analysis

⇒ Bear (0° view)

⇒ Bear (45° view)



IAP, 2007

Image Synthesis

UNCONVENTIONAL GRAPHICS

Θ = 0° view ⇒

Θ = 45° view ⇒



Blanz

 

and Vetter,
MPI
SigGraph

 

‘99

Reconstructed 3D Face Models from 1 image



Blanz

 

and Vetter,
MPI
SigGraph

 

‘99

Reconstructed 3D Face Models from 1 image



V. Blanz, C. Basso, 
T. Poggio

and 
T. Vetter, 2003

Vermeer,
Tischbein,
raffaello,
Hopper



Extending the same basic learning techniques (in 2D): Trainable Videorealistic

 

Face 
Animation

 
(voice is real, video is synthetic)

Ezzat,

 

Geiger, Poggio, SigGraph

 

2002




Trainable Videorealistic

 

Face Animation

/B/ /AE/ /AE/ /JH//SIL/ /B/ /AE/ /JH/ /JH//SIL/

Phone Stream

Trajectory 
Synthesis

MMM

Phonetic Models

Image Prototypes

1. Learning

System learns from 4 mins
 of video the face appearance 

(Morphable
 

Model) and the 
speech dynamics of the 
person

Tony Ezzat,Geiger, Poggio, SigGraph

 

2002

2. Run Time

For any speech input the system 
provides as output a synthetic 
video stream



Movies
Marylin,
Rehema



A Turing test: what is real and what is synthetic?

We  assessed the realism of the talking face  with 
psychophysical experiments.

Data suggest that the system passes a visual  
version of the Turing test.



Overview of overview

o  o  The problem of sThe problem of supervised learning: “real”
 

math 
behind it

o   Examples of engineering applications (from our 
group)

o   Learning and the brainLearning and the brain



How then do the learning machines described in the theory compare with brains? 

One of the most obvious differences is the ability of people and animals to 
learn from very few examples (“poverty of stimulus” problem).

A comparison with real brains offers another,  related, challenge to learning theory. Classical  “learning 
algorithms” correspond to one-layer architectures. The cortex suggests a hierarchical architecture. Thus…are
hierarchical architectures with more layers justifiable in terms of statistical 
learning theory?

Notices of the American Mathematical Society (AMS), Vol. 
50, No. 5,

537-544, 2003.
The Mathematics of Learning: Dealing with Data

Tomaso Poggio and Steve Smale

Beyond classical (shallow) architectures

An additional learning “principle”: hierarchical architectures?



Hierarchical model: Riesenhuber

 

& Poggio 1999, 2000; Serre

 

et al., 
2005; Serre

 

Oliva Poggio 2007…following previous ideas/work by Hubel 
and Wiesel, Fukushima, et al.

*Modified from (Gross, 1998)

A hierarchical model of the ventral stream, 
which is also a (unsupervised + supervised) learning algorithm…

[software available online]



•

 

V1:
•

 

Simple and complex cells tuning

 

(Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)
•

 

MAX operation in subset of complex cells (Lampl et al 2004)

•

 

V4:
•

 

Tuning for two-bar stimuli

 

(Reynolds Chelazzi & Desimone 1999)
•

 

MAX operation

 

(Gawne et al 2002)
•

 

Two-spot interaction

 

(Freiwald et al 2005)
•

 

Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu

 

et al., 2007)
•

 

Tuning for Cartesian and non-Cartesian gratings

 

(Gallant et al 1996)

•

 

IT:
•

 

Tuning and invariance properties

 

(Logothetis et al 1995)
•

 

Differential role of IT and PFC in categorization

 

(Freedman et al 2001, 2002, 2003)
•

 

Read out data (Hung Kreiman Poggio & DiCarlo 2005)
•

 

Pseudo-average effect in IT

 

(Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

•

 

Human:
•

 

Rapid categorization (Serre Oliva Poggio 2007)
•

 

Face processing (fMRI + psychophysics)

 

(Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)

…predicts and is consistent with neural data…



…mimics human recognition performance 
in rapid categorization 

(and does well as on computer vision benchmarks)

human-

 observers (n 
= 24) 80%

Model 82%

Serre Oliva & Poggio 2007

•

 

d’~ standardized error 
rate 
•

 

the higher the d’, the 
better the perf.

Human 80%




Thus from neuroscience a challenge for “classical”
learning theory:

an unusual, hierarchical
 

architecture
with unsupervised and supervised learning…

…but we need a theory --
 

not just a model!





It is just possible that the brain ….

…will tell us more  on learning theory!



Overview of overview

o  o  The problem of sThe problem of supervised learning: “real”
 

math 
behind it

o   Examples of engineering applications (from our 
group)

o   Learning and the brainLearning and the brain
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