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Learning: Brains and Machines

brain;\ |
and

machines

Learning is the gateway to
understanding the brain and to
making intelligent machines.

Problem of learning:

a focus for
o modern math
o computer algorithms
o heuroscience



Learning: much more than memory

Role of learning (theory and applications in many different
domains) has grown substantially in CS: learning+statistics is
becoming a lingua franca in CS

Plasticity and learning increasingly have a central stage in the
neurosciences

Until now math and engineering of learning has developed
independently of neuroscience...but it may begin to change as
we will see in the class.



Learning:
math, engineering, heuroscience

Theorems on foundations of learning:

)
fla) =3 ek (xi,%) Learning theory
+ algorithms Predictive algorithms

\

* Bioinformatics

ENGINEERING * Computer vision
APPLICATIONS

- Computer graphics, speech
synthesis, creating a virtual actor

How visual cortex works - and how it
may suggest better computer vision
systems




Learning:
math, engineering, neuroscience (now)

Theorems on foundations of learning

Learning theory
+

algorithms Predictive algorithms
(Regularization networks ~ SMS...)

!
flx) = Z c; K (x;,x)

\

* Bioinformatics

ENGINEERING * Computer vision

APPLICATIONS * Computer graphics, speech
synthesis

« Speech recognition

How visual cortex works:

Deep Learning in Cortex




Math Camp? Look at old Mathcamps on Web site:
we will decide on Monday

DN

Functional Analysis:

Linear and Euclidean spaces

scalar product, orthogonality
orthonormal bases, norms and semi-norms,

Cauchy sequence and complete spaces \

Hilbert spaces, function spaces Linear Algebra

and linear functional, Riesz representation _ _ ~ _
Basic notion and definitions: matrix and

theorem, convex functions, functional calculus.
\ j vectors norms, positive, symmetric,

invertible matrices, linear systems,
condition number.

& Multivariate Calculus:
\ \Extremal problems, differential, gradient.)

(
Probability Theory:

Random Variables (and related
concepts), Law of Large Numbers,
Probabilistic Convergence,
Concentration Inequalities.

- J




9.520 Statistical Learning Theory and Applications (2007)

10:30 - Simon Laflamme "Online Learning Algorithm for Structural Control using
Magnetorheological Actuators”

- Emily Shen “Time series prediction”

- Zak Stone "Facebook project”

- Jeff Miller “Clustering features in the standard model of cortex”
- Manuel Rivas "Learning Age from Gene Expression Data“

- Demba Ba “Sparse Approximation of the Spectrogram via Matching Pursuits:
Applications to Speech Analysis”

- Nikon Rasumov "Data mining in controlled environment and real data"



9.520 Statistical Learning Theory and Applications

2:35-2:50 "Learning card playing strategies with SVMs", David
Craft and Timothy Chan

2:50-3:00 "Artificial Markets: Learning to trade using Support
Vector Machines", Adlar Kim

3:00-3:10 "Feature selection: literature review and new
development’', Wei Wu

3:10—3:25 "Man vs machines: A computational study on face
detection" Thomas Serre



Project suggestions

We will provide some in the next few classes and we will
speak more about them just before spring break



Overview of overview

o The problem of supervised learning: "real” math
behind it

o Examples of engineering applications (from our
group)

o Learning and the brain



Reason to learn some learning theory

Applications cannot be carried out by simply using a black box.

What is needed: the right formulation of the problem (which is
helped by knowledge of theory): choice of representation (inputs,

outputs), choice of examples, validate predictivity, do not
datamine

(X)) =wx+Db



Notes

Two connected and overlapping strands in learning theory:
1 Bayes, hierarchical models, graphical models...
1 Statistical learning theory, regularization (closer to classical

math, functional analysis+probability theory+empirical process
theory...)



Interesting development:
in the last few years he theoretical foundations of learning
have become part of mainstream mathematics:
L. Valiant,V. Vapnik, S. Smale, I. Daubechie et al.

BULLETIN (Mew Series) OF THE

AMERICAN MATHEMATICAL 80 CIETY
Volume 38, Number 1, Pages 145

LR L IIITEI(DHIIIE!JE .1

Aarticls slactronically poblished an Oetabar & 2001

ON THE MATHEMATICAL FOUNDATIONS OF LEARNING

FELIPE CUCKER AKD STEVE SMALE

The problem of learmang 13 arguably at the
very core af the problem of inlelligence,
bobfe bi

T. Pogoio and C R, Shelton

INTRODUCTION

(1) A main theme of this report is the relatmnshlp of apprcuﬂma,tmn to learning and
the primary role of sampling [mdu Ve H - to emphasize relations
of the theory of learning to the jn particular, there
are large roles for probability theGry—c X . = deast squares, and for
tools and ideas from linear algebra and hneaI 211131].’515 ;’Ln advantage of doing this
1= that communication i= facilitated and the power of core mathematics 1= more
easily bronght to hear.




Learning from examples: goal is not to memorize but to
generalize, eqg predict.

— —
—

INPUT - =———— —————p OUTPUT
—
e ———  ——

Given a set of /examples (data) {(X v, ), (X,,V,) (X,,VY )}
11 Y1/ 2V )27 £y Je

Question. find function 7 such that

is a good predictor of y for a future input x (fitting the data is not
enough!): ~
F(x)=y



Binary classification case

High dim.
space

—y
—
—
b
—y
—

decision
boundary




predictive

@ -=datafromf

= function f —

= approximation of f

Generalization:

estimating value of function where there are no data (good generalization means
predicting the function well; most important is for empirical or validation error to
be a good proxy of the prediction error)

Regression:  function is real valued

Classification: function is binary



T he learning problem

Thereis an unknown probability distribution on the prod-
uct space Z = X x Y, written pu(z) = pu(x,y). We assume
that X Is a compact domain in Euclidean space and Y a
closed subset of IR.

The training set S = {(x1.y1),..-. Xn,yn)} = {z1,...2n}
consists of n samples drawn i.i.d. from pu.

H is the hypothesis space, a space of functions f: X — Y.

A learning algorithm is a map L : Z" — 'H that looks
at S and selects from H a function fg : x — y such that
fe(x) =y in a predictive way.



A key requirement for learning: generalization
An informal definition of generalization is to find a model that

predicts well new data

Example:
A prototypical algorithm is ERM (empirical risk minimization)

¢
Z V(f(xi),yi)

ﬁ-all—l

min
feH

What are the conditions ensuring generalization?

We need a more formal definition...



Definitions

Given a function f, a loss function V, and a probability distribution
over Z, the expected or true error of f is:

I[f] _IEZV[f.z]_/ZV(f.Z)d;L(Z) (1)

which is the expected loss on a new example drawn at random from

L.
The empirical error of f is:

Islf] = - 3 V(F. 2) @)

A very natural requirement for fs is distribution independent
generalization

Y, lim |ls[fs] — I[fs]| = O in probability (3)

In other words, the training error for the solution must converge to the
expected error and thus be a “proxy” for it. Otherwise the solution
would not be “predictive”.



Control of complexity

The problem does not have a predictive solution in general
(just fitting the data does not work).

Choosing an appropriate hypothesis space A (for instance a
compact set of continuous functions) can guarantee
generalization (how good depends on the problem and other
parameters) (Vapnik,...)



A superficially different requirement for learning is
well-posedness of the associated optimization problem

A problem is well-posed if its solution

exists, unique and J. 5. Hadamard, 1865-1963

is stable, eg depends continuously on the data
(here examples)



Well-posedness and generalization: are they related?

It is possible to show that under quite general assumptions
generalization and well-posedness are equivalent, eg one implies the other.
Stability implies generalization:

a stable solution is predictive and (for ERM) also viceversa.

ERM

CVloo
stability

Ry e\
% Generalization

+ consistency

Generalization

For general
symmetric
algorithms

Eloo+EEloo
stability

Mukherjee, S., P. Niyogi, T. Poggio and R. Rifkin. Learning Theory: Stability is Sufficient for Generalization and Necessary and Sufficient for Consistency of
Empirical Risk Minimization, Advances in Computational Mathematics, 25, 161-193, 2006; see also Nature, 2005



http://cbcl.mit.edu/projects/cbcl/publications/ps/mukherjee-ACM-06.pdf
http://cbcl.mit.edu/projects/cbcl/publications/ps/mukherjee-ACM-06.pdf

This is an example of foundational results
In learning theory...



Learning theory and natural sciences

Conditions for generalization in learning theory

have deep, almost philosophical, implications:

they may be regarded as conditions that guarantee a
theory to be predictive (that is scientific)



Regularization in RKHS: .
a simple algorithm which generalizes well (it is uniformly stable)
and is computationally tractable

feH

I )
min ZZ V(f(xi)_yi)_l_ﬂ“ Hin
=1 -

implies

Fx)=> oK (x,x;)

Equation includes splines, Radial Basis Functions and
Support Vector Machines (depending on choice of V).

RKHS were explicitly introduced in learning theory by Girosi (1997), Vapnik (1998).
Moody and Darken (1989), and Broomhead and Lowe (1988) introduced RBF to learning theory.
Poggio and Girosi (1989) introduced Tikhonov regularization in learning theory and worked

(implicitly) with RKHS. RKHS were used earlier in approximation theory (eg Parzen, 1952-1970,
Wahba, 1990).

For a review, see Poggio and Smale, The Mathematics of Learning,
Notices of the AMS, 2003




“Classical” kernel machines are equivalent to
(shallow) networks

Kernel machines...

fx)= > cK(x,x)+b

can be “written” as shallow networks
(for many different V): the value of K
corresponds to the “activity” of the
“uniC’ for the input and the correspond
to “weights”

CN




Winning against the curse of dimensionality:
new research directions in learning

Many processes - physical processes as well as human activities — generate
high-dimensional data: curse of dimensionality or poverty of stimulus.

There are, however, basic properties of the data generating process that may
allow to circumvent the problem of high dimensionality and make the analysis
possible:

smoothness - exploited by L2 regularization techniques

sparsity - exploited by L1 regularization techniques

data geometry - exploited by manifold learning techniques

hierarchical organization — suggested by the architecture of sensory cortex

min_%ﬁ V(f(x)-Yy)+4 pen(f)_

feH
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New Research Directions

Hierarchical Architectures

-----------------------------------------------

Neural Wavelets/
Res |::_c:cnsr='-.|r Multiscale
Derived Representations
Kernels

Science & Applications

Neuroscience of Cortex
Vision
Language
Genomics

I

Y
L2
Regularization KF-'"‘_IE|
and smoothness Machines
A

Smoothness

Geometry &
Topology

Diffusion
Maps

--------------------



/] Regula rization

Manifold
Learmng

kernel spaces error bounds
& feaures S ablllty & comple)uty

: : Applications
(SuperVISed) Learnlng vision, neuroscience,
classification, regression speech...

multiclass, feature selection

g




Overview

Supervised learning: real math



Overview of overview

o The problem of supervised learning: "real” math
behind it

o Examples of engineering applications (from our
group)

o Learning and the brain



OUTPUT

——
INPUT >
—

Computer Vision
Face detection
Pedestrian detection
Scene understanding
Video categorization

Decoding the Neural Code
Bioinformatics

Graphics

Text Classification
Artificial Markets



Object recognition for computer vision:
(personal) historical perspective
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*Best CVPR’07 paper 10 yrs ago the past few years...
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Computer Vision
Face detection
Pedestrian detection
Scene understanding
Video categorization

Decoding the Neural Code
Bioinformatics

Graphics

Text Classification
Artificial Markets



Learning Object Detection:
Finding Frontal Faces ...

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern

Sung, Poggio 1995



Learning Face Detection

Sung, Poggio
1994



Face detection....
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Computer Vision
Face detection
Pedestrian detection
Scene understanding
Video categorization

Decoding the Neural Code
Bioinformatics

Graphics

Text Classification
Artificial Markets



Trainable System for Object Detection:
Pedestrian detection - Results

ﬂh.#‘ F‘f .""‘:'-;,'.
. = L " . "'. J'F




We did well with shallow learning architectures (SVMs):
~10 year old CBCL computer vision work:
SVM-based pedestrian detection system in
Mercedes test car...

now becoming a product (MobilEye, Israeli company)
JOO LU LI '





eSS

037.0004 DCC/GER

Wir bringen unseren Autos das Sehen bei, weil eine Mutter nicht iiberall sein kann.

Eine Mutter kann ihre Kinder nicht immer beschiitzen. Besonders dann nicht, wenn sie alleine im StraBenverkehr
unterwegs sind. Deshalb arbeiten wir an FuBgéngererkennungs-Systemen fiir unsere Autos, die dem Fahrer
helfen, Menschen auf der StraBe schneller zu erkennen. Innerhalb ven Bruchteilen einer Sekunde warnt das
System den Fahrer, damit er besser reagieren kann. Diese intelligenten Technologien zur Vermeidung van
Unfillen entwickelt die DaimlerChrysler Farschung schon heute. Filr die Automobile von morgen.

Tiefere Einblicke in die Vision vom ,Unfalifreien Fahren' erhalten Sie unter: www.daimlerchrysler.com

DAIMLERCHRYSLER

Answers for questions to came.




Remark: training set defines task
People classification/detection

o la Q: d
7189 patterns

Representation: overcomplete dictionary of Haar wavelets; high
dimensional feature space (>1300 features)

Vo
Smiilfﬁ

pentium: ||

J

pedestrian detection



Remark: training set defines task
Face detection

Representation: grey levels (normalized) or overcomplete
dictionary of Haar wavelets

i

pentium: ||

i

face detection



Remark: training set defines task
Face identification

B

Representation: grey levels (normalized) or overcomplete
dictionary of Haar wavelets

i

pentium: ||

i

face identification
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Computer Vision
Face detection
Pedestrian detection
Scene understanding
Video categorization

Decoding the Neural Code
Bioinformatics

Graphics

Text Classification
Artificial Markets



The street scene project

Source: Bileschi, Wolf & Poggio



StreetScenes Database. Subjective Results




car detection ROC curve pedestrian detection ROC curve
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True positive rate

True positive rate

building texture detection
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Computer Vision
Face detection
Pedestrian detection
Scene understanding
Video categorization

Decoding the Neural Code
Bioinformatics

Graphics

Text Classification
Artificial Markets



The problem: action recognition

Training Videos

bend jack jump

jump run walk

side wavel wave2

*each video~4s, 50~100 frames

Testing videos

Dataset from (Blank et al, 2005)




A new model of the dorsal stream (motion)
following the ventral stream model

dorsal ventral
stream stream

Parallel Pathways
in Visual Cortex

dorsal stream

Ventral stream Adapted from (Merigan & Maunsell, 1993; Maunsell & Newsome 1987)

Unsupervised learning in MT (S2) from natural video sequences




Using a large dictionary of MT-like units for
action recognition works well!

(Dog'ggf)t 41 model | chance —
KTH Human 81.3% 91.6% | 16.7%
UCSD Mice 75.6% 79.0% | 20.0%
Weiz. Human 86.7% 96.3% | 11.1%

L] Cross-validation: 2/3 training, 1/3 testing, 10 repeats

| Source code for benchmark graciously provided by Piotr Dollar

(Jhuang Serre Wolf & Poggio ICCV

2007)
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Computer Vision
Face detection
Pedestrian detection
Scene understanding
Video categorization

Decoding the Neural Code
Bioinformatics

Graphics

Text Classification
Artificial Markets



Can we “read-out” from visual cortex what the monkey sees?

Perceived / reported object

Real-time
accuracy

l

= Predicted
object percept:
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The end station of the ventral stream
in visual cortex is IT

g command

Categorical judgments, janlye6 m _
decision making ' Simple visual forms,
edges, comers

'I|I'-I1 "o =0 s

-
Ir scdiate visual
«$- o

e
faces, obiects
1-\-"\—_ .
e To spinal cord
e T finigar muscle o e——160=220 ms
180=260 ms




Reading-out the neural code in AIT

B B B B B S B S e

Bl 0B

/7 objects, .--.-...
8classes M B EBEEEE B
EEEEEEEE
No % @ YR @ C
o0 ® 0 v @ ® & e 9

EEEEF oo n 0E

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005




Example of one AIT cell




Training a classifier on neuronal

activity.
— —
—
—
— —

From a set of data (vectors of activity of n neurons (x) and object label (y)

(X0, Ya)h (X5, Y2 ) s (X0 Y,)

Find (by training) a classifier eg a function #such that ¢ (X) = §

is a good predictor of object label y for a future neuronal activity x



We can decode the brain’s code and read-out from neuronal populations:
reliable object categorization (>90% correct) using ~200 arbitrary AIT “neurons”

Categorization
Vehicle * Toy
 Body
Video speed: 1 oo
« Human Face
frame/sec
/ « Monkey Face
Actual presentation .  Vehicle
_ . Neuronal population
rate: 5 objects/sec .
activity « Food
Classifier prediction * Box
« Cat/Dog

Hung, Kreiman, Poggio, DiCarlo. Science 2005
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Pedestrian detection
Scene understanding
Video categorization

Decoding the Neural Code
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Text Classification
Artificial Markets



Learning from examples paradigm

Statistical Learning
Algorithm

Prediction

=)



New feature selection SVM:

Only 38 training examples, 7100 features

AML vs ALL: 40 genes 34/34 correct, O rejects.

5 genes 31/31 correct, 3 rejects of which 1is an error.

Al Memo No.1677
C.B.C.L Paper No.182

Support Vector Machine Classification of Microarray
Data

S. Mukherjee, P. Tamayo, D. Slonim, A. Verri, T. Golub,
J.P. Mesirov, and T. Poggio

Pomeroy, S.L., P. Tamayo, M. Gaasenbeek, L.M. Sturia, M. Angelo, M.E.
McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D.
Zagzag, M.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S.
Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S.
Lander and T.R. Golub. Prediction of Central Nervous System Embryonal
Tumour Outcome Based on Gene Expression, Nature, 2002.
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Image Analysis

= Bear (0° view)

= Bear (45° view)




Image Synthesis

UNCONVENTIONAL GRAPHICS

®=0°view =

O = 45° view =



Reconstructed 3D Face Models from 1 image

3D Reconstruction from a Single Image

Blanz and Vetter,
MPI
SigGraph ‘99



Reconstructed 3D Face Models from 1 image

Neue Ansichten aus einem eizelnen Bild

Rekonstruktion Mit Texturextraktion
Vorloge ohne Texturextraktion und Mimik

ea

Blanz and Vetter,
MPI
SigGraph ‘99



V. Blanz, C. Basso,
T. Poggio
and
T. Vetter, 2003




Ezzat, Geiger, Poggio, SigGraph 2002




Trainable Videorealistic Face Animation

1. Learning

System learns from 4 mins
of video the face appearance
(Morphable Model) and the
speech dynamics of the
person

Tony EZZGT,Geiger‘, Poggio, SigGl"Gph 2002

2. Run Time

For any speech input the system
provides as output a synthetic
video stream

Phone Stream
ISIL/IB/ /lB//,?\E//iA\E//,TE/ /IJHHH/ /lJH/?IL/

Trajectory Phonetic Model
Synthesis onetic Models
MMM Image Prototypes




Marylin,
eeeeee



A Turing test: what is real and what is synthetic?

We assessed the realism of the talking face with
psychophysical experiments.

Data suggest that the system passes a visual
version of the Turing test.

Experiment | # subjects | % correct | t | p<
 Single pres. 22 .30 233 [ 0.3
Fast single pres. | 21 32 1% 0.619 | 0.5
" Double pres. 27 16.67% VRN N

Table 1: Levels of correct identification of real and synthetic se-
quences. t represents the value from a standard t-test with signifi-
cance level of p<_.



Overview of overview

o The problem of supervised learning: "real” math

behind it

o Examples of engineering applications (from our
group)

o Learning and the brain



Beyond classical (shallow) architectures

An additional learning “principle”: hierarchical architectures?

How then do the learning machines described in the theory compare with brains?

0 One of the most obvious differences is the ability of people and animals to
learn from very few examples (“poverty of stimulus” problem).

O A comparison with real brains offers another, related, challenge to learning theory. Classical “learning
algorithms” correspond to one-layer architectures. The cortex suggests a hierarchical architecture. Thus...are
hierarchical architectures with more layers justifiable in terms of statistical
learning theory?

Notices of the American Mathematical Society (AMS), Vol.
50, No. 5,
537-544, 2003.
The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale



A hierarchical model of the ventral stream,
which is also a (unsupervised + supervised) learning algorithm...

Qe -

Prefrontal
Cortex
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Hierarchical model: Riesenhuber & Poggio 1999, 2000; Serre et al.,

2005; Serre Oliva Poggio 2007...following previous ideas/work by Hubel .
and Wiesel, Fukushima, et al. [SOftware ava”able On“ne]



...predicts and is consistent with neural data...

V1.
« Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)

* MAX operation in subset of complex cells (Lampl et al 2004)

V4:

» Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)
MAX operation (Gawne et al 2002)
Two-spot interaction (Freiwald et al 2005)

Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu et al., 2007)

Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

IT:

* Tuning and invariance properties (Logothetis et al 1995)

+ Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)

* Read out data (Hung Kreiman Poggio & DiCarlo 2005)

» Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

Human:
» Rapid categorization (Serre Oliva Poggio 2007)
* Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)



...mimics human recognition performance
INn rapid categorization
(and does well as on computer vision benchmarks)
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a- ) v == Human-observers
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Serre Oliva & Poggio 2007




Thus from neuroscience a challenge for “classical”
learning theory:

an unusual, hierarchical architecture
with unsupervised and supervised learning...

...but we need a theory -- not just a model!



Derived Kernels

joint work with J. Bouvrie (MIT), A. Caponnetto (CityU), L.
Rosasco (MIT and Genoa), S. Smale (TTI-C)

January 24, 2009



It IS just possible that the brain ....

...will tell us more on learning theory!



Overview of overview

o The problem of supervised learning: "real” math
behind it

o Examples of engineering applications (from our
group)

o Learning and the brain
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