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Notation

Remp[f] — % Z V(f(xz)7 y2>

fo = arg ffréig R|f] R[fo] = how well we can do

iy = arg ?Ig{lR[f] R[fx] = how well we can do in H

fr.L = argmin Remp|f] R[f+.c] = how well we can do in X
feH : .
with our L observations



Rlfuc]— Rlfol = Rlfwcl—RIfx] +  Rlfx]— R[fo]

Generalization Error Estimation Error Approximation Error

For least squares cost V(f(x),y) = (f(x) —y)”

R[f] = f = follz + R[fo]

Rlfr.c) — R[fo]l = Rlfuc)—Rlfx] + |- fol>

Estimation Error Approximation Error

Independent of Independent of
target space examples
(statistics) (analysis)

Judiciously select H to balance the tradeoff



e Nested hypothesis spaces

HoCH{C---CH, C---
e Error

n — inf —
e = inf If — foll2

For most families of hypothesis spaces we encounter

lim ¢, =0
Tn— 00

e How fast does this error go to zero? We are interested
In bounds of the form

€, <cn “




Example Hypothesis Spaces

e Polynomials on [0,1]. #H, is the set of all polynomials
with degree at most n

H,, =span{l,z,z* z°, ..., 2"}

We can approximate any smooth function with a
polynomial (Taylor series).

e Sines and cosines on [-=w,n].
H,, = span{1, cos(z), sin(x), cos(2z), sin(2z), ...,

cos(nx),sin(nx) }

We can approximate any square integrable function with
a Fourier series.




Calculating approximation rates

Col—m,w| = Co|—m, 7] ﬂ Lo|—m, 7|

e Functions in this class can be represented by

@)

f(z) = Z ce'? Cl X ' f(z)e ™ dx

k=0

e Parseval:

|f(2)]I2 = Z ek |”




Target Space

e Sobolev space of smooth functions

dxs

Wso = {f e Cy|l—m, 7] ) < oo}
2

e Using parseval:

I£15 =

d® f
dxs
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Hypothesis Space

« 7, is the set of trig functions of degree n
n

p(a?) _ Z akeikx

k=1

e |If fis of the form
O

f(a:) _ cheikx

k=1
Best approximation in L, norm by #_ is given by
mn
tkx
fulz) = E Cr.€

k=1




Approximation Rate

Note that H, has n parameters. How fast does €, go to
zero?

2 2 - 2 - k,QS 2
alfP=f=fald= D> lalP= ) 5l
k=n-+1 k=n-+1
1 o0 1 o0 2
<o X Rl < Ykl = 1
T T
k=n+1 k=1

More smoothness, faster convergence
enlf] < clfln™"

What happens in higher dimension?




Co|—m, 7| = Co[—m, 7]* ﬂ Lo[—m, m]®

e Functions can be written

f(x)= > cwe™ ™
WEZi
e Target space

Weo =4 f e Col ]
|G

e Again by Parseval

dEf|?
dz$

112 = \

2



e Hypothesis Space H,

= E awe'™ "X

WEZd
ngagt

e Number of parameters in H, is n = td. Best
approximation to f is given by

ft (X) _ Z Cweiw*x

wEZfl'_

0<w,<t




e How fast does ¢; go to zero? We do the calculation for

d=2:
o0 t o0 o0 t
el/IP=If = fillg = 2o lewel+ 3 D lewel®+ D > o’
k f=t4+1 k=1 f=t+1 k=t+1 0=1
i st _|_€28’ |
— 28 28 ke
(k.)el + 0
00
<i Z (k28 —|—€28)|C ‘2
t28
kf=t+1
L s, g2 /12
< D (B el = 25,
k4=1

e Now the approximation scales as (as a function of n):

S

enlf] < clfln™d




Curse of dimensionality

Blessing of smoothness

Curse of dimensionality

e Provides an estimate for the number of parameters

d

1 s
T X —
€

e |Is this upper bound very loose?




Hard Limits

e Tommi Poggio: just remember Nyquist....
Sample rate = 2 x max freq

Num samples = 2 X T x max freq




In dimension d: Num samples = (2 x T x max freq)¢

i
:
T




N-widths

e Let X be a normed space of functions. Let A be a subset
of X. We want to approximate A with a linear
combination of a finite set of “basis functions” X.

e Kolmogorov N-widths let us quantify how well we could
do over all choices of finite sets of basis functions.

d,(A,X) = inf sup inf f— Z CLDrk
k=1

D1,y P €X feA  ClsysCn

The n-width of A iIn X




Multivariate Example

X = Ly([0,1]%)

_ . s times differentiable
W372 o {f ' Hf”S < OO} sth derivative in L,

A={feWsa : |flls <1}

e Theorem (from Pinkus 1980):

A, (A, X) ~ (lf

T

This rate is achieved by splines




“Dimension Free” convergence

e Consider networks of the form
T

fa(x) =) cudr(x;wy)

k=1

e “Shallow” networks with parametric basis functions

Pr(x; W)

e Characterize when we can get good approximations

W1geeesW C14...,Cnp

inf inf - If =} eror(swr)
k=1




Maurey-Barron-Jones Lemma

e Theorem: If fis in the convex hull of a set G in a
Hilbert Space with ||g]|.<b for all g € G, then for every
n>1 and every c’>b?-||f]|.?, there is an f, in the convex
hull of n points in G such that

/
C

e Also known as Maurey’s “empirical method”

e Many uses in computing covering numbers (see, e.g.,
generalization bounds, random matrices, compressive
sampling, etc.)




Maurey-type Approximation Schemes

Define f(w)= [ [f(x)e ™ *dx
Rd

e Jones (1992) n
Fe L (RY / F(w)]dw < oo Fo=S" cx cos(wix + by)
R k=1
e Barron (1993) n
VieL®) [ lellf@lde <o fu= eolwix b
R k=1
e Girosi & Anzellotti (1995) n
f € WQ’S(RCZ> with 2s > d fn = ch exp(—|/x — szHz)
k=1

e Using nearly identical analysis, all of these schemes

achieve |
-=(3)




Hidden Smoothness

e Barron hides the smoothness via the functional

/ Jwlllf(w)ldw < oo
Rd

e Girosi and Anzellotti show that this means

1
f = ] % g for some g€ Ly

e Note: functions get smoother as d increases




Algorithmic difficulty

e Training these networks is hard

T
minimizeg, ., ||f — Z crd(+; 0r)
k=1

- But for fixed 0,, the following is almost always trivial:

minimize., ||f — Z c@(-; 0)
k=1

e How to avoid optimizing the 6,?




Random Features

e What happens if we pick 6, at random and then optimize
the weights?

minimize., ||f — Z cLd(+; )
k=1

e It turns out, with some a priori information about the
frequency content of f, we can do just as well as the
classical approximation results of Maurey and co.




e Fix parameterized basis functions qb(, w)

- Fix a probability distribution p(w)

e Our target space will be:

7, = {f = [a@otsw)a
e With the convention that

_ {O a(w) =0

oo otherwise

a(w)

p(w)

=)

sup
W




Random Features: Example

- Fourier basis functions:  ¢(X;w,b) = cos(w™x + b)

- Gaussian parameters w ~ N(0,0°]) b ~ unif ([0, 27])
e If flw)= [ f(x)e ™ *dz, then sup @ < 00 means
Rd , W p(w)

that the frequency distribution of f has subgaussian tails.




Fp = {fz/a(w)fb(-;w)dw Sup % < oo}
e Theorem: Letf be in ]—"p with
sup M <C
w | p(w)

Let ®,,..., ®, be sampled iid from p. Then

[

™ ‘F_ VAR //\/V’/.lv\
J CEkEF\A, Wk )
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-
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5
|
=

(\V

with probability at least 1 - 6.




Generalization Error

Rlfu.c] - Rlfo] = Rlfwcl—Rlfxl + = Fol>

Estimation Error Approximation Error

C1Mn Co
< — + —

L n

e It's a finite sized basis set!
e Choosing N = O(\/f) gives overall convergence of

0()




Kernels

k(x,y) = / p(w)o(x;w)o(y; w)dw

e Note that under the mapping

x 1 £(x) = | F5o(xion)]

1<k<D
we have

(€(x),8(y)) ~ k(x,y)

 Ridge regression with random features approximates
Tikhonov regularized least-squares on an RKHS




Random Features for Classification

Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P = 30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P =30 sy Mlight
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P = 50 libSVM
KDDCUP 39 (see footnote) 1.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) < 1s
4,900,000 instances 127 dims D =50 P =10 SVM+sampling




Gaussian RKHS vs Random Features

e« Random Features are good: when L is sufficiently
large and the function is sufficiently smooth

e TR on RKHS is good: when L is small or the function is
not so smooth
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Approximates Gaussian Process regression
with Gaussian kernel of variance gamma

lambda: regularization parameter

dataset: X 1s dxN, y 1s 1xN

test: xtest i1s dxl

D: dimensionality of random feature

training

w = randn(D, size(X,1));

b = 2*pi*rand(D,1);

Z = cos(sgrt(gamma)*w*X + repmat(b,1,si1ze(X,2)));

Equivalent to
alpha = (lambda*eye(size(X,2)+Z*Z")\(Z*y);
alpha = symmlg(@(v) (lambda*v(:) + *(Z"*v(:))),..
Z*y(:),1le-6,2000);

testing
ztest = alpha(:)’*cos( sgrt(gamma)*w*xtest(:) + ..
+ repmat(b,1l,si1ze(X,2)) );
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