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Outline

• Decomposition of the generalization error
• Approximation and rates of convergence
• “Dimension Independent” convergence rates
• Maurey-Barron-Jones approximations
• Random Features



Notation

how well we can do

how well we can do in H

how well we can do in H
with our L observations



Generalization Error Estimation Error Approximation Error

For least squares cost

Estimation Error Approximation Error

Independent of 
target space
(statistics)

Independent of 
examples
(analysis)

Judiciously select H to balance the tradeoff



• Nested hypothesis spaces

• Error

For most families of hypothesis spaces we encounter

• How fast does this error go to zero?  We are interested 
in bounds of the form



Example Hypothesis Spaces

• Polynomials on [0,1]. Hn is the set of all polynomials 
with degree at most n

We can approximate any smooth function with a 
polynomial (Taylor series).

• Sines and cosines on [-π,π]. 

We can approximate any square integrable function with 
a Fourier series.



Calculating approximation rates

• Functions in this class can be represented by

• Parseval:



Target Space

• Sobolev space of smooth functions

• Using parseval:



Hypothesis Space

• Hn is the set of trig functions of degree n

• If f is of the form

Best approximation in L2 norm by Hn is given by



Approximation Rate

• Note that Hn has n parameters. How fast does      go to 
zero?

• More smoothness, faster convergence

• What happens in higher dimension?



• Functions can be written

• Target space

• Again by Parseval



• Hypothesis Space.  Ht

• Number of parameters in Ht is n = td. Best 
approximation to f is given by



• How fast does go to zero?  We do the calculation for 
d=2:

• Now the approximation scales as (as a function of n):



Curse of dimensionality
Blessing of smoothness

Curse of dimensionality

• Provides an estimate for the number of parameters

• Is this upper bound very loose?



Hard Limits

• Tommi Poggio: just remember Nyquist….
Sample rate = 2 x max freq

Num samples = 2 x T x max freq



In dimension d: Num samples = (2 x T x max freq)d

T

T



N-widths

• Let X be a normed space of functions. Let A be a subset 
of X.  We want to approximate A with a linear 
combination of a finite set of “basis functions” X.

• Kolmogorov N-widths let us quantify how well we could 
do over all choices of finite sets of basis functions.

The n-width of A in X



Multivariate Example

• Theorem (from Pinkus 1980):

This rate is achieved by splines

s times differentiable
sth derivative in L2



“Dimension Free” convergence

• Consider networks of the form

• “Shallow” networks with parametric basis functions

• Characterize when we can get good approximations



Maurey-Barron-Jones Lemma

• Theorem: If f is in the convex hull of a set G in a 
Hilbert Space with ||g||2≤b for all g ∈ G, then for every 
n≥1 and every c’>b2-||f||2

2, there is an fn in the convex 
hull of n points in G such that

• Also known as Maurey’s “empirical method”
• Many uses in computing covering numbers (see, e.g., 

generalization bounds, random matrices, compressive 
sampling, etc.)



Maurey-type Approximation Schemes

• Jones (1992)

• Barron (1993)

• Girosi & Anzellotti (1995)

• Using nearly identical analysis, all of these schemes 
achieve 

Define



Hidden Smoothness

• Barron hides the smoothness via the functional

• Girosi and Anzellotti show that this means

• Note: functions get smoother as d increases

for some



Algorithmic difficulty

• Training these networks is hard

• But for fixed θk, the following is almost always trivial:

• How to avoid optimizing the θk?



Random Features

• What happens if we pick θk at random and then optimize 
the weights?

• It turns out, with some a priori information about the 
frequency content of f, we can do just as well as the 
classical approximation results of Maurey and co.



• Fix parameterized basis functions

• Fix a probability distribution

• Our target space will be:

• With the convention that 



Random Features: Example

• Fourier basis functions:

• Gaussian parameters

• If ,  then means

that the frequency distribution of f has subgaussian tails. 



• Theorem:  Let f be in F
p

with

Let ω1,…, ωn be sampled iid from p.  Then

with probability at least 1 - δ.



Generalization Error

Estimation Error Approximation Error

• It’s a finite sized basis set!
• Choosing                           gives overall convergence of 



Kernels

• Note that under the mapping

we have

• Ridge regression with random features approximates 
Tikhonov regularized least-squares on an RKHS



Random Features for Classification



Gaussian RKHS vs Random Features

• Random Features are good: when L is sufficiently 
large and the function is sufficiently smooth

• TR on RKHS is good: when L is small or the function is 
not so smooth



% Approximates Gaussian Process regression 
%   with Gaussian kernel of variance gamma
% lambda: regularization parameter 
% dataset: X is dxN, y is 1xN
% test: xtest is dx1
% D: dimensionality of random feature 

% training
w = randn(D, size(X,1));
b = 2*pi*rand(D,1);
Z = cos(sqrt(gamma)*w*X + repmat(b,1,size(X,2)));

% Equivalent to
% alpha = (lambda*eye(size(X,2)+Z*Z')\(Z*y);

alpha = symmlq(@(v)(lambda*v(:) + *(Z'*v(:))),…
Z*y(:),1e-6,2000);

% testing
ztest = alpha(:)’*cos( sqrt(gamma)*w*xtest(:) + …

+ repmat(b,1,size(X,2)) );
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