
Multiclass Classification

9.520 Class 06, 25 Feb 2008

Ryan Rifkin

“It is a tale

Told by an idiot, full of sound and fury,

Signifying nothing.”

Macbeth, Act V, Scene V

What Is Multiclass Classification?

Each training point belongs to one of N different classes.

The goal is to construct a function which, given a new

data point, will correctly predict the class to which the

new point belongs.

What Isn’t Multiclass Classification?

There are many scenarios in which there are multiple cate-

gories to which points belong, but a given point can belong

to multiple categories. In its most basic form, this problem

decomposes trivially into a set of unlinked binary problems,

which can be solved naturally using our techniques for bi-

nary classification.

A First Idea

Suppose we knew the density, pi(x), for each of the N

classes. Then, we would predict using

f(x) = arg max
i∈1,...,N

pi(x).

Of course we don’t know the densities, but we could esti-

mate them using classical techniques.

The Problem With Densities, and
Motivation

Estimating densities is hard, especially in high dimensions

with limited data.

For binary classification tasks, we have seen that directly

estimating a smooth separating function gives better re-

sults than density estimation (SVM, RLSC). Can we extend

these approaches usefully to the multiclass scenario?

A Simple Idea — One-vs-All
Classification

Pick a good technique for building binary classifiers (e.g.,

RLSC, SVM). Build N different binary classifiers. For the

ith classifier, let the positive examples be all the points in

class i, and let the negative examples be all the points not

in class i. Let fi be the ith classifier. Classify with

f(x) = argmax
i

fi(x).

Another Simple Idea — All-vs-All
Classification

Build N(N −1) classifiers, one classifier to distinguish each

pair of classes i and j. Let fij be the classifier where class

i were positive examples and class j were negative. Note

fji = −fij. Classify using

f(x) = argmax
i





∑

j

fij(x)



 .

Also called all-pairs or one-vs-one classification.

The Truth

OVA and AVA are so simple that many people invented

them independently. It’s hard to write papers about them.

So there’s a whole cottage industry in fancy, sophisticated

methods for multiclass classification.

To the best of my knowledge, choosing properly tuned

regularization classifiers (RLSC, SVM) as your underlying

binary classifiers and using one-vs-all (OVA) or all-vs-all

(AVA) works as well as anything else you can do.

If you actually have to solve a multiclass problem, I strongly

urge you to simply use OVA or AVA, and not worry about

anything else. The choice between OVA and AVA is largely

computational.

OVA vs. AVA

Viewed naively, AVA seems faster and more memory effi-

cient. It requires O(N2) classifiers instead of O(N), but

each classifier is (on average) much smaller. If the time to

build a classifier is superlinear in the number of data points,

AVA is a better choice. With SVMs, AVA’s probably best.

However, if you can solve one RLS problem over your entire

data set using a matrix factorization, you get multiclass

classification essentially for free (see RLS lecture). So

with RLS, OVA’s a great choice.

Other Approaches

There have been two basic approaches to extending regu-

larization ideas to multiclass classification:

• “Single Machine” approaches — try to solve a single

optimization problem that trains many binary classifiers

simultaneously.

• “Error Correcting Code” approaches — try to combine

binary classifiers in a way that lets you exploit decorre-

lations and correct errors.

These approaches are not completely exclusive.

Weston and Watkins, Vapnik

The first “single machine” approach:

min
f1,...,fN∈H,ξ∈Rℓ(N−1)

∑N
i=1 ||fi||

2
K + C

∑ℓ
i=1

∑

j 6=yi
ξij

subject to : fyi(xi) + byi ≥ fj(xi) + bj + 2 − ξij

ξij ≥ 0

Key idea. Suppose that point i is in class yi. Then, for

j 6= yi, we want (abusing our notation w.r.t. b),

fyi(xi) − fj(xi) ≥ 2,

or we pay a linear penalty of ξij.

WW Analysis I

This idea seems intuitively reasonable. Is it good?

Weston and Watkins perform experiments. On 2 out of 5

datasets, they find that their approach performs substan-

tially better than OVA, and about the same on the rest.

However, they state that “to enable comparison, for each

algorithm C = ∞ was chosen (the training data must be

classified without error),” so they are performing ERM,

not regularization (C = ∞ ⇐⇒ λ = 0). A Gaussian kernel

was used, with σ the same for each method (not necessar-

ily a good idea), and no information about how this σ was

chosen.

WW Analysis II

Under what circumstances would we expect this method to

outperform a OVA approach? Tough to say. We’d need

a situation where it would be hard to actually separate

the data, but where there exist meaningful subsets of the

data where even though we can’t assign a positive value

to the correct class, we can assign a less negative value

to it than other classes. Or, we need subsets where even

though we’re assigning positive values to some incorrect

class, we’re assigning even more strongly positive values

to the correct classes.

Challenge: Come up with a set of examples that actually

has this property. Double challenge: Have it hold when

the kernel is a properly-tuned Gaussian.

WW Analysis III

There is no evidence that this scheme is any more accurate

than an OVA scheme. It is, however, much slower. Instead

of N problems of size ℓ, we need to solve a problem of size

(N − 1)ℓ. Moreover, although the authors derive a dual

problem, they don’t show any way to decompose it; the

resulting problem is much more complex than a standard

SVM.

Lee, Lin and Wahba: Motivation

In an earlier paper, Lin showed that asymptotically, as we

let ℓ → ∞ and λ → 0, the solution of an SVM will tend to

f(x) = sign

(

p(x) −
1

2

)

.

This is good for binary classification.

Now consider multiclass classification with an OVA scheme.

In regions where there is a dominant class i for which

p(x) > 1
2, all is good. If there isn’t, then all N of the

OVA functions will return −1, and we will be unable to

recover the most likely class.

Lee, Lin and Wahba: Notation

For i ∈ 1, . . . , N , define vi as the N dimensional vector with

a 1 in the ith coordinate and − 1
N−1 elsewhere. The vector

vi serves as the “target” for points in class i — we try to

get function outputs that are very close to the entries of

vi.

Given a training point xi, we try to make fj = − 1
N−1 for

j 6= yi, and then we also require that
∑N

j=1 f(xi) = 0. This

leads us to. . .

Lee, Lin and Wahba: Formulation

min
f1,...,fN∈HK

1
ℓ

∑ℓ
i=1

∑N
j=1,j 6=yi

(fj(xi) + 1
N−1)+ + λ

∑N
j=1 ||fj||

2
K

subject to :
∑N

j=1 fj(x) = 0 ∀x

Lee, Lin and Wahba: Analysis

Asymptotically, this formulation gives

fi(x) =

{

1 iff i = argmax pj(x)

− 1
N−1 otherwise

In turn, this means that our final multiclass classification

function will be

f(x) = argmax pj(x).

Lee, Lin and Wahba: Issues I

• Even under the conditions of the analysis, this produces

a different result from OVA only when argmax pj(x) <
1
2 — the Bayes error rate must be > 1

2, indicating a

very tough problem that should likely be modelled dif-

ferently.

• The “problem” with an OVA-SVM scheme relies on

the linearity of the SVM loss. If we use instead RLSC

or a square-loss SVM, these problems disappear, and

the Bayes rule is again recovered asymptotically.

Lee, Lin and Wahba: Issues II

• Like the WW formulation, this formulation is big, and

no decomposition method is provided.

• This is an asymptotic analysis. It requires n → ∞ and

λ → 0, and no rates are provided. But asymptotically,

density estimation will allow us to recover the optimal

Bayes rule. The burden is on the authors to show that

there is a useful middle ground where this performs

well.

Lee, Lin and Wahba: Experiments

Two toy examples. In one, no comparison is made to other

techniques. In the other, they compare to OVA. The data

is 200 points in one-dimension in thre classes, constructed

so that class 2 never has conditional probability > 50%.

The LLW approach predicts class 2 in the region where it’s

more likely than any other class (total error rate .389, and

the OVA system fails there (total error .4243). I cannot

understand how their parameters were chosen.

Crammer and Singer: Formulation

They consider a formulation that is a modified version of

WW:

min
f1,...,fN∈H,ξ∈Rℓ

∑N
i=1 ||fi||

2
K + C

∑ℓ
i=1

∑

j 6=yi
ξi

subject to : fyi(xi) ≥ fj(xi) + 1 − ξi

ξi ≥ 0

Key difference: there is only one slack variable ξi per data

point, rather than N − 1 slack variables per data point as

in WW. Instead of paying for each class j 6= i for which

fi(x) < fj(x) + 1, they pay only for the largest fj(x).

Crammer and Singer: Development

The majority of the C&S paper is devoted to efficiently

solving the formulation. The Lagrangian dual is taken,

dot products are replaced with kernel products, and a dual

decomposition algorithm is developed. This algorithm is

substantially more complicated than the SVM algortihm;

the mathematics is fairly involved, but elegant.

In the experimental section of their paper, C&S make

claims as to both the speed and the accuracy of their

method. . .

Crammer and Singer: Speed

C&S claim that their method is orders of magnitude faster

than than an OVA approach. However:

• They benchmark the OVA approach by using Platt’s

1998 results, in which he implemented SMO with no

caching of kernel products. In contrast, their system

used 2 GB of RAM to cache kernel products.

• The paper states that the fastest version has “two

more technical improvements which are not discussed

here but will be documented in the code that we will

shortly make available”; the code was never made avail-

able.

Crammer and Singer: Accuracy

C&S consider data sets from the UCI repository. Their

chart shows the difference in error rates between their sys-

tem and an OVA system, but not the actual error rates.

The largest differences appeared to be on the satimage (dif-

ference of approximately 6.5%) and shuttle (difference of

approximately 3%) data sets. Through personal commu-

nication, Crammer indicated that the actual error rates for

his system on these two data sets were 8.1% and 0.1%,

respectively. In my own one-vs-all experiments on these

data sets, I achieved error rates of 7.9% for the satimage

data and 0.35% on the shuttle data. These differences

are much smaller than the differences reported by C&S.

Dietterich and Bakiri: Introducing the
ECC Approach

Consider a {−1,1}-valued matrix M of size N by F where F

is the number of classifiers to be trained. The ith column

of the matrix induces a partition of the classes into two

“metaclasses”, where a point xi is placed in the positive

metaclass for the jth classifier if and only if Myij = 1.

When faced with a new test point x, we compute f1(x), . . . , fF (x),

take the signs of these values, and then compare the Ham-

ming distance between the resulting vector and each row

of the matrix, choosing the minimizer:

f(x) = arg min
r∈1,...,N

F
∑

i=1

(

1 − sign(Mrifi(x))

2

)

.

Dietterich and Bakiri: Introducing the
ECC Approach

D&B suggest that M be constructed to have good error-

correcting properties — if the minimum Hamming distance

between rows of M is d, then the resulting multiclass clas-

sification will be able to correct any ⌊d−1
2 ⌋ errors.

In learning, good column separation is also important —

two identical (or opposite) columns will make identical

errors. This highlights the key difference between the

multiclass machine learning framework and standard error-

correcting code applications.

Dietterich and Bakiri: Experiments

A large number of experiments were performed. Decision

trees and feed-forward neural networks were used as base

learners, and several methods of generating codes were

tried.

In general, it seems that their approach outperformed OVA

approaches. However, differences were often small, the

quality of the underlying binary classifiers is unknown, and

often only relative performance results are given, so this

work is difficult to evaluate.

Allwein, Schapere and Singer:
Generalizing D&B

AS&S generalize D&B in two main ways:

• Allow 0-entries (in addition to 1 and -1) in the M matrix

— if Mij = 0, then examples from class i are simply

not used in classifier j.

• Use loss-based decoding to classify examples — instead

of taking the sign of the output of each classifier, com-

pute the actual loss, using the training loss function

(hinge loss for SVM, square loss for RLSC).

AS&S observe that OVA approaches, “all-pairs” approaches,

the ECC approach of D&B, and generalizations of this to

include 0 in the matrix all fit into their framework.

Allwein, Schapere and Singer:
Experimental Setup

AS&S tested multiclass SVMs and AdaBoost using five

different matrices:

• OVA and AVA: one-vs-all and “all-pairs”

• COMPLETE: O(2N) columns

• DENSE and SPARSE: Randomized codes with and

without zeros in M .

Their conclusion: “For SVM, it is clear that the widely

used one-against-all code is inferior to all the other codes

we tested.”

Allwein, Schapere and Singer:
Experimental Conditions

AS&S performed all SVM experiments using a polynomial

kernel of degree 4; no justification for this choice is made.

No information about regularization parameters is given.

Fortunately, AS&S gave actual numerical results for their

experiments.

The difference in performance was large on only two data

sets: yeast and satimage. I performed my own experiments

on these data sets, using Gaussian kernels. The Guassian

parameter σ was tuned by “cheating” on the test set, al-

though the accuracy rates were not very sensitive to choice

of σ (and see later).

Allwein, Schapere and Singer:
Experimental Comparison

OVA AVA COM DEN SPA

Allwein et al. 40.9 27.8 13.9 14.3 13.3
Rifkin 7.9 7.9 8.0 8.2 8.2
Comparison of results for the satimage data set.

OVA AVA COM DEN SPA

Allwein et al. 72.9 40.9 40.4 39.7 47.2
Rifkin 39.0 39.3 38.5 39.3 38.8
Comparison of results for the yeast data set.

Fürnkrnaz: Round-Robin Classification

Using Ripper, a rule-based learner, as an underlying bi-

nary learner, Fürnrkanz showed experimentally that all-

pairs substantially outperformed one-vs-all across a variety

of data sets from UCI.

His experiments include the satimage and yeast data sets

discussed above, with his best all-pairs system achieving

accuracy rates of 10.4% and 41.8%, respectively. These

results cannot be directly compared to my numbers (7.9%

and 39.0%) because I cheated and because the yeast set-

up was somewhat different, but see below.

Hsu and Lin: A Metastudy

Hsu and Lin empirically compared different methods of

multiclass classification using SVMs as binary learners.

They tried five methods: OVA, AVA, DAG (similar to AVA,

faster at testing time), the method of Crammer & Singer,

and the method of Weston & Watkins. They used Gaus-

sian kernels, tuned on validation sets, and reported all the

numbers.

They conclude that “one-against-one and DAG methods

are more suitable for practical use than the other meth-

ods.” We take the numbers directly from their paper, and

presented them in a format that suits us. . .

Hsu and Lin: Results

Best Worst Diff Size Size * Diff

iris 97.333 96.667 .666 150 1.000
wine 99.438 98.876 .562 178 1.000
glass 73.832 71.028 2.804 214 6.000
vowel 99.053 98.485 .568 528 3.000
vehicle 87.470 86.052 1.418 746 10.58
segment 97.576 97.316 .260 2310 6.006
dna 95.869 95.447 .422 1186 5.005
satimage 92.35 91.3 1.050 2000 20.1
letter 97.98 97.68 .300 5000 15.0
shuttle 99.938 99.910 .028 14500 4.06

A view of the multiclass results of Hsu and Lin for RBF

kernels.

New Experiments

With Aldebaro Klautau of UCSD, I performed a set of ex-

periments on data from the UCI data set. There were three

main things we wanted to explore, in a well-controlled,

(hopefully) reproducible setting:

• Revisiting the data sets Fürnkranz used, but using well-

tuned SVMs as the base learners.

• Comparing the five different matrices of Allwein et al.,

across a range of data sets.

• Comparing RLSC and SVM.

Protocol

Details of the protocol are found in the papers. All ex-

periments were done with a Gaussian kernel. For a given

experiments, the same parameters (σ and C (or λ)) were

used for all machines. All parameters were found by cross-

validation.

We focussed specifically on data sets on which Fürnkranz

had found a significant difference between OVA and AVA.

But what is significance?

McNemar’s Test, I

Fürnkranz used McNemar’s test to assess the significance

of the difference in performance of two classifiers.

We compute the number of times (over the test set) each

of these events occur:

• both classifiers were correct on (CC)

• both classifiers were incorrect (II)

• A was correct, B incorrect (CI)

• B was correct, A incorrect (IC)

McNemar’s Test, II

McNemar’s Test uses the observation that, if the classifiers

have equal error rates, then CI and IC should be equally

frequent. This test is good because it requires very few

assumptions (just that the observations are paired). It’s

bad because it ignores the number of examples on which

the two systems agree, and (directly related) it does not

provide a confidence interval.

We therefore decided to introduce...

A Bootstrap Test For Comparing
Classifiers

We calculate the empirical probabilities of the four events

CC, CI, IC, and II. Then, a large number (in our ex-

periments, 10,000) of times, we generate bootstrap sam-

ples containing ℓ “data points”, each of which is simply

an occurrence of CC, CI, IC, or II with the appropriate

probability. We then calculate confidence intervals (in our

experiments, 90%) on the difference in performance (CI -

IC).

Other, better approaches may be possible.

Data Sets Used

att / average / min / max baseline
Name train test class # nom # examples per class error (%)
soybean-large 307 376 19 35 / 35 16.2 / 1 / 40 87.2
letter 16000 4000 26 16 / 0 615.4 / 576 / 648 96.4
satimage 4435 2000 6 36 / 0 739.2 / 409 / 1059 77.5
abalone 3133 1044 29 8 / 1 108.0 / 0 / 522 84.0
optdigits 3823 1797 10 64 / 0 382.3 / 376 / 389 89.9
glass 214 - 7 9 / 0 30.6 / 0 / 76 64.5
car 1728 - 4 6 / 6 432.0 / 65 / 1210 30.0
spectrometer 531 - 48 101 / 0 11.1 / 1 / 55 89.6
yeast 1484 - 10 8 / 0 148.4 / 5 / 463 68.8
page-blocks 5473 - 5 10 / 0 1094.6 / 28 / 4913 10.2

Reproducing Fürnkranz’s Experiments

Data Set Current Experiments Furnkranz’s paper

soybean-large 13.3 6.30
letter 7.7 7.85
satimage 12.2 11.15
abalone 74.1 74.34
optdigits 7.5 3.74
glass 26.2 25.70
car 2.8 2.26
spectrometer 51.2 53.11
yeast 41.6 41.78
page-blocks 2.6 2.76

Code Matrix Sizes

Name OVA AVA COM DEN SPA

soybean-large 19 171 262143 43 64
letter 26 325 33554431 48 71
satimage 6 15 31 26 39
abalone 29 406 268435455 49 73
optdigits 10 45 511 34 50
glass 6 15 31 26 39
car 4 6 7 20 30
spectrometer 48 1128 1.407375e+014 56 84
yeast 10 45 511 34 50
page-blocks 5 10 15 24 35

Results: SVM AVA vs. OVA

Data Set AVA OVA DIFF AGREE BOOTSTRAP

soybean-large 6.38 5.85 0.530 0.971 [-0.008, 0.019]
letter 3.85 2.75 1.09 0.978 [0.008, 0.015]
satimage 8.15 7.80 0.350 0.984 [-5E-4, 0.008]
abalone 72.32 79.69 -7.37 0.347 [-0.102, -0.047]
optdigits 3.78 2.73 1.05 0.982 [0.006, 0.016]
glass 30.37 30.84 -.470 0.818 [-0.047, 0.037]
car 0.41 1.50 -1.09 0.987 [-0.016, -0.006]
spectrometer 42.75 53.67 -10.920 0.635 [-0.143, -0.075]
yeast 41.04 40.30 0.740 0.855 [-0.006, 0.021]
page-blocks 3.38 3.40 -.020 0.991 [-0.002, 0.002]

Results: SVM DENSE vs. OVA

Data Set DEN OVA DIFF AGREE BOOTSTRAP

soybean-large 5.58 5.85 -0.270 0.963 [-0.019, 0.013]
letter 2.95 2.75 0.200 0.994 [5E-4, 0.004]
satimage 7.65 7.80 -0.150 0.985 [-0.006, 0.003]
abalone 73.18 79.69 -6.51 0.393 [-0.092, -0.039]
optdigits 2.61 2.73 -0.12 0.993 [-0.004, 0.002]
glass 29.44 30.84 -1.40 0.911 [-0.042, 0.014]
car - 1.50 - - -
spectrometer 54.43 53.67 -0.760 0.866 [-0.011, 0.026]
yeast 40.30 40.30 0.00 0.900 [-0.011, 0.011]
page-blocks - 3.40 - - -

Results: SVM SPARSE vs. OVA

Data Set SPA OVA DIFF AGREE BOOTSTRAP

soybean-large 6.12 5.85 0.270 0.968 [-0.011, 0.016]
letter 3.55 2.75 0.800 0.980 [0.005, 0.011]
satimage 8.85 7.80 1.05 0.958 [0.003, 0.018]
abalone 75.67 79.69 -4.02 0.352 [-0.067, -0.014]
optdigits 3.01 2.73 0.280 0.984 [-0.002, 0.008]
glass 28.97 30.84 -1.87 0.738 [-0.070, 0.033]
car 0.81 1.50 -0.69 0.988 [-0.011, -0.003]
spectrometer 52.73 53.67 -0.940 0.744 [-0.038, 0.019]
yeast 40.16 40.30 -0.140 0.855 [-0.015, 0.013]
page-blocks 3.84 3.40 0.440 0.979 [0.001, 0.007]

Results: SVM COMPLETE vs. OVA

Data Set COM OVA DIFF AGREE BOOTSTRAP

soybean-large - 5.85 - - -
letter - 2.75 - - -
satimage 7.80 7.80 0.00 0.999 [-1E-3, 1E-3]
abalone - 79.69 - - -
optdigits 2.67 2.73 -0.060 0.996 [-0.003, 0.002]
glass 29.44 30.84 -1.340 0.911 [-0.042, 0.014]
car 1.68 1.50 -0.180 0.998 [5.79E-4, 0.003]
spectrometer - 53.67 - - -
yeast 38.61 40.30 -1.690 0.906 [-0.028, -0.005]
page-blocks 3.49 3.40 -0.090 0.983 [-0.002, 0.004]

Results: FÜRNRKANZ vs. SVM OVA

Data Set FUR OVA DIFF AGREE BOOTSTRAP

soybean-large 13.3 5.85 7.45 0.891 [.056, .109]
letter 7.7 2.75 4.95 0.922 [.043, .057]
satimage 12.2 7.80 4.40 0.906 [.0345, .055]
abalone 74.1 79.69 -5.59 0.335 [-.083, -0.029]
optdigits 7.5 2.73 4.77 0.920 [0.035, 0.056]
glass 26.2 30.84 -4.64 0.734 [-0.098, 0.005]
car 2.8 1.50 1.3 0.969 [0.006, 0.020]
spectrometer 51.2 53.67 -2.47 0.488 [-0.060, 0.017]
yeast 41.6 40.3 1.29 0.765 [-0.005, -0.032]
page-blocks 2.6 3.40 -0.80 0.978 [-0.012, -0.005]

Results: SVM OVA vs. RLSC OVA

Data Set RLSC SVM DIFF AGREE BOOTSTRAP

soybean-large 6.12 5.85 0.270 0.984 [-0.008, 0.013]
letter - 2.75 - - -
satimage 7.9 7.80 0.010 0.979 [-0.004, 0.006]
abalone 72.7 79.69 -7.000 0.284 [-0.099, -0.041]
optdigits 2.5 2.73 -0.230 0.980 [-0.007, 0.003]
glass 31.3 30.84 0.460 0.808 [-0.037, 0.047]
car 2.9 1.50 1.40 0.980 [0.009, 0.020]
spectrometer 52.3 53.67 -1.370 0.821 [-0.036, 0.009]
yeast 40.0 40.30 -0.300 0.872 [-0.016, 0.011]
page-blocks 3.25 3.40 -0.150 0.983 [-0.004, 0.001]

Results: SVM AVA vs. RLSC AVA

Data Set RLSC SVM DIFF AGREE BOOTSTRAP

soybean-large 8.2 6.38 1.820 0.941 [0.000, 0.037]
letter - 3.85 - - -
satimage 7.4 8.15 -.750 0.974 [-0.013, -0.001]
abalone 73.66 72.32 1.340 0.560 [-0.009, 0.034]
optdigits 3.0 3.78 -.780 0.974 [-0.013, -0.002]
glass 29.4 30.37 -0.970 0.864 [-0.047, 0.028]
car 2.3 0.41 1.89 0.980 [0.013, 0.024]
spectrometer 49.1 42.75 6.350 0.738 [0.036, 0.092]
yeast 40.0 41.04 -1.040 0.838 [-0.025, 0.005]
page-blocks 3.4 3.38 0.020 0.981 [-0.003, 0.003]

Results: SVM DENSE vs. RLSC
DENSE

Data Set RLSC SVM DIFF AGREE BOOTSTRAP

soybean-large 8.0 5.58 2.41 0.971 [0.011, 0.040]
letter 8.0 7.65 0.350 0.976 [-0.002, 0.009]
abalone 72.8 73.18 -0.380 0.663 [-0.025, 0.017]
optdigits 2.5 2.61 -0.110 0.982 [-0.006, 0.003]
glass 29.9 29.44 -.460 0.864 [-0.037, 0.042]
car - - - - -
spectrometer 52.9 54.43 -1.530 0.825 [-0.038, 0.008]
yeast 40.0 40.30 -.300 0.888 [-0.016, 0.009]
page-blocks - - - - -

Results: SVM SPARSE vs. RLSC
SPARSE

Data Set RLSC SVM DIFF AGREE BOOTSTRAP

soybean-large 7.4 6.12 1.280 0.973 [0.000, 0.027]
letter - 3.55 - - -
satimage 8.4 8.85 -0.450 0.958 [-0.011, 0.003]
abalone 73.3 75.67 -2.370 0.621 [-0.043, -0.005]
optdigits 3.6 3.01 0.590 0.977 [0.001, 0.011]
glass 29.4 28.97 -0.430 0.841 [-0.037, 0.047]
car 4.3 0.81 3.490 0.963 [0.028, 0.043]
spectrometer 52.5 52.73 -0.230 0.827 [-0.024, 0.021]
yeast 40.9 40.16 0.740 0.877 [-0.005, 0.020]
page-blocks 3.5 3.84 -0.340 0.980 [-0.006, 1.83E-4]

Towards a Theory, I

Recall that to solve an RLSC problem, we solve a linear

system of the form

(K + λℓI)c = y.

Because this is a linear system, the vector c is a linear

function of the right hand side y. Define the vector yi as

yi
j =

{

1 if yj = i

0 otherwise

Towards a Theory, II

Now, suppose that we solve N RLSC problems of the form

(K + λℓI)ci = yi,

and denote the associated functions fc1, . . . , fcN . Now, for

any possible right hand side y∗ for which the yi and yj

are equal, whenever xi and xj are in the same class, we

can calculate the associated c vector from the ci without

solving a new RLSC system. In particular, if we let mi

(i ∈ {1, . . . , N}) be the y value for points in class i, then

the associated solution vector c is given by

c =
N
∑

i=1

cimi.

Towards a Theory, III

For any code matrix M not containing any zeros, we can

compute the output of the coding system using only the

entries of the coding matrix and the outputs of the under-

lying one-vs-all classifiers. In particular, we do not need

to actually train the classifiers associated with the coding

matrix. We can simply use the appropriate linear combi-

nation of the “underlying” one-vs-all classifiers. For any

r ∈ {1, . . . , N}, it can be shown that

F
∑

i=1

L(Mrifi(x))

=
N
∑

j=1
j 6=r

Drjf
j(x), (1)

where Crj ≡
∑F

i=1 MriMji and Drj ≡ (F − Crj).

Towards a Theory, IV

Noting that Drj is guaranteed to be positive under the

basic assumption that no two rows of the coding matrix

are identical, we see that

f(x) = arg min
r∈{1,...,N}

F
∑

i=1

L(Mrifi(x))

= arg min
r∈{1,...,N}

N
∑

j=1
j 6=r

Drjf
j(x).

Towards a Theory: Class Symmetry I

We define a coding matrix to be class-symmetric if Dij (and

therefore Cij as well) is independent of i and j (assuming

i 6= j). Note that a sufficient (but not necessary) condi-

tion for a coding-matrix to class symmetric is if, whenever

it contains a column containing k 1’s and n − k -1’s, all
N !

k!(N−k)!
such columns are included. The OVA and COM-

PLETE schemes are class-symmetric, while the DENSE

scheme is in general not (the AVA and SPARSE schemes

include zeros in the coding matrix, and are not addressed

by this analysis).

Towards a Theory: Class Symmetry II

For class-symmetric schemes, Drj is independent of the

choice of r and j, and can be denoted as D∗. For these

schemes,

f(x) = arg min
r∈1,...,N

D∗
N
∑

j=1
j 6=r

fj(x)

= arg min
r∈1,...,N

N
∑

j=1
j 6=r

fj(x)

= arg max
r∈1,...,N

fr(x),

When RLSC is used as the underlying binary learner for

class-symmetric coding matrices containing no zeros, the

predictions generated are identical to those of the one-vs-

all scheme.

