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Outline
• Motivation: why should we use hierarchical 

feature maps or learning architectures? What 
can iteration do for us?

• Learning invariances: a brief introduction with 
two examples from the literature at the end.

• Derived distance: towards a theory that can 
explain why the CBCL model works.

• Derived distance: preliminary experiments.
• Derived distance: open problems and future 

directions.



How do the learning machines described in the theory compare with brains?

One of the most obvious differences is the ability of people and animals to 
learn from very few examples.

A comparison with real brains offers another,  related, challenge to learning theory. The “learning algorithms”
we have described in this paper correspond to one-layer architectures. Are hierarchical architectures 
with more layers justifiable in terms of learning theory?

Why hierarchies? For instance, the lowest levels of the hierarchy may represent a dictionary of features 
that can be shared across multiple classification tasks.

There may also be the more fundamental issue of sample complexity. Thus our ability of learning from 
just a few examples, and its limitations, may be related to the hierarchical architecture of cortex. In the limit: 1 ex.

Hierarchies can be used to Incorporate specific kinds of invariances…(vs. virtual 
examples).

Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale

Why Hierarchies?



Figure: Bengio & LeCun, 2007

Some Engineered Hierarchical Models…

Neocognitron, from Fukushima et al., 1980

Convolutional Neural Networks (LeCun)

CBCL Model

Figure: T. Serre

Hinton’s Deep 
Autoencoder

from: G. Hinton, Science 2007.

…most with specific invariances built in…



• Hierarchies can be used to incorporate particular pre- 
defined invariances in a straightforward manner, by e.g. 
pooling, and transformations.

• Combinations of features, combinations of combinations 
agglomerate into a complex object or scene.

• But what if we don’t know how to characterize variation 
in the data, or even know what kinds of variation we 
need to capture?

• Nonparametric representations with random templates: 
look for patterns that we’ve seen before, whatever they 
might be.

• Learning features and invariances automatically from 
sequential data, in an unsupervised setting. (Maurer, 
Wiskott, Caponnetto) – more on this later.

Learning Invariant Representations



• Steve Smale has proposed a simple yet powerful 
framework for constructing invariant representations with 
a hierarchy of associations.

• Derived distance can be seen as a simplification of the 
CBCL model that lends itself well to analysis.

• Some outstanding questions to be answered:
-Does it reduce sample complexity? Poverty of the stimulus 

implies some additional apparatus.
- Does it provide a separation of classes that is more useful for 
classification than just the image pixels?
- If so, what are the optimal parameters?
- How many layers are needed?
- Does the distance converge to something interesting in the limit 

of templates or layers?

Learning Invariant Representations: Derived 
Distance



• Iterated analysis with arbitrary transforms and nonlinearities in 
between layers.

• Template dictionaries at each layer encode objects in terms of 
similarities.

• The set of templates give an empirical approximation to the true 
distribution of image patches.

• First layer performs operations similar to template matching over the 
set of allowed transformations.

• At higher layers, we work with representations based on previous 
layers’ templates.

• Final output is the distance (or similarity) between two objects 
(images, strings,…)

• Summary: Images are represented as a hierarchy of similarities  to 
templates of increasing complexity, modulo scaling and translations.

Derived Distance: Sketch



Derived Distance (2-layer case): Definitions

• Consider an image defined on R,
f : R→ [0, 1]. f belongs to Im(R).

• Domains in R2 : v ⊂ v0 ⊂ R

• Im(v), Im(v0) are subsets of restrictions
of the image f ∈ Im(R) to v and v0.

• H is a set of transformations
h : v → v0 of the form h = hβhα with
hα(x) = αx and hβ(x) = x+ β.
Similar definition for h0 ∈ H 0 with
h0 : v0 → R.

-Note that here, the function h translates the entire image over the
“receptive field” v. Usually we think of sliding a filter over the image…

Smale, S., T. Poggio, A. Caponnetto, and J. Bouvrie. Derived Distance: towards a mathematical 
theory of visual cortex, CBCL Paper, Massachusetts Institute of Technology, Cambridge, MA, 
November, 2007.
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Derived Distance (2-layer case): Definitions

A key property:

• A patch of an image is isolated by
restricting the image to a transformed
domain via composition. f(h(x)) is an
image itself from v → [0, 1]. Depending
on how h is chosen (via the parameters
α,β) we get a transformed piece of f .

R
v’

v
f ◦ hβ0 = f ◦ h0β0 ◦ hβ1

f ◦ h0β0

example (translations only):



Derived Distance: Templates
• We will be encoding image patches in terms of “similarities”
to some collection of “templates”.

• Assume there are finite sets of “templates” T ⊂ Im(v) and
T 0 ⊂ Im(v0), with probability measures ρT and ρT 0 .

• In practice we could construct template sets by sampling
patches randomly from a set of images.

• We’ll need one more definition: The set “RT
+”

of functions T → R+ accepting a template
and producing a positive real number. (This
space is also given the structure of an
Lp-normed, measurable space with measure ρT )



Derived Distance: Neural Similarity

(1)

(2)



Derived Distance: Neural Similarity (2)

−→ N1
t (f) is the best match of the template of size v in the image f .

Here f is a sub-image of size v0, not the entire image.

−→ N1(f) is an encoding of an image f in terms of similarities to
templates t ∈ T . The templates are smaller than the image, and
are compared to all sub-regions of size v in the image.

(2)
pooling step



Derived Distance: Iterating the Process

1. f ◦ h0 selects a patch of size v0 from the full image.

2. Then we compute N1(f ◦ h0) and N1(t0).

(4)



Derived Distance: Example (Top-Down/Recursive)

1. Separately find the top-level encodings for f and g, as encodings of en-
codings.

2. f ◦ h0 selects a patch of size v0 from the full image.

3. Then compute N1(f ◦ h0) and N1(t0).

4. To compute N1(f◦h0), the encoding of the patch f◦h0, we need to consider
patches of size v within each patch of size v0, f ◦h0 ◦h, and compare those
patches to templates of size v0.

Alternating “pooling”
and “filtering” steps.



Derived Distance: Example (2)

),(min 10 ptd
p R

v’
v

An image is first encoded by the hierarchy:
(1) For every patch of size v’ in the image (R), we find its encoding by saving the minimum 

distances between sub-regions of size v in v’ and the templates t of size v in the first 
layer’s dictionary.

(2) We find similar encodings for the templates of size v’ in the second layer’s dictionary.
(3) We then find the image’s final encoding by saving the smallest distances between each 

template t’ of size v’ and the set of image patches v’, where the distances are taken 
between the respective encodings of templates and patches.

),(min 10 ptd
p

),(min 20 ptd
p

),(min 0 ptd Tp

patch within p’ of size vtemplates of size v

Every patch p’ of size v’ is represented
as a vector of minimum distances…

Step (2)N1(f ◦ h0) =



d02(·, ·)),(min 10 ptd
p

R
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v
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p
′

′
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p
′
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),(min 1 ptd Tp
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′

patches in f,g of size v’templates of size v’

The image is represented as a vector of minimum distances 
between template encodings and encodings of patches of size v’

The derived distance between two images is the distance between their encodings.

R
v’

v
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′
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Derived Distance: Example (3)

f

g

Step (4)

N2(f) =

N2(g) =

http://people.csail.mit.edu/jvb/excursions/egypt/DSCF0096.JPG


• First we have N1,S
h,t (f) = d0(f ◦ h, t) where

N1,S
h,t (f) corresponds to the response of an

S1 cell with template t with receptive field
h ◦ v.

• The Neural Similarity is now
N1,C
t (f) = minh∈H d0(f ◦ h, t) where

N1,C
t : Im(v0)→ RT

+. N
1,C
t (f) corresponds

to the response of a C1 cell with template t
and with receptive field — the region over
which the min is taken — corresponding to v0.

Derived Distance: Connection to the CBCL Model
CBCL Model

Figure: T. Serre

(There is still a slight difference between the
derived distance formulation and the model
involving the pooling…)



Derived Distance with Normalized Kernels

• We can reformulate the model in terms of normalized kernels (similarities)
with max as the pooling operation.

• Define bK(x, y) = K(x, y)p
K(x, x)K(y, y)

.

Proposition: bK(x, x) ≡ 1 and K̂ is p.d. if K is.

• The derived kernel at layer n is defined recursively as

Kn(f, g) = Av
t∈Tn−1

n
max

h∈Hn−1

bKn−1(f ◦ h, t) max
h∈Hn−1

bKn−1(g ◦ h, t)
o
.

Proposition: Kn is p.d. if Kn−1 is.

• The first (base) kernelK0 can be any p.d. kernel, but thereafter the kernels
are normalized dot products (acting on different domains however).

(recent suggestion from Steve Smale)



Derived Distance: Remarks

-The probability measure ρ

 

on Im(R) should be given by the real world 
images for the given vision problem under study. Then the templates ti ∈

 
T can be most conveniently be taken as random draws from ρv

 

on Im(v), 
where ρv

 

is the probability measure induced from ρ

 

by restriction. 

-The distance can be considered as a hierarchy of associations, with 
templates of increasing complexity.

- A classifier can be trained on the final similarity vectors, or on 
combinations of similarity vectors from different layers as is done with the 
CBCL model.

-The derived distance might also be used to construct a kernel function 
via K(f,g)=exp(-d2n(f,g)), or used in a nearest-neighbor classifier directly.

-The same model can be immediately applied to other domains, such as 
text and nucleotide sequences.



Image Classification Experiments

-Task: Classify 14x14 pixel handwritten 3’s 
and 8’s.
-Compare performance with translations
from 0 to 6 pixels in 8 random directions.
- Compare to Euclidean distance between 
the pixels (straw-man sanity check).
-Simple nearest-neighbor classifier using
d1 or d2 .
- Randomly sampled patches as templates.

(500) 4x4
templates

(50) 8x8 
templates



Image Classification Experiments (2)

Here, the norms on images and neural similarities take the form:

where p=2, M is the number of pixels in an image, and we assume a uniform 
measure throughout. These are just normalized Euclidean p-norms.



Image Classification Experiments (3)

1-NN classification accuracy over 100 test 
examples with 2 labeled examples, one per 
class, when using the L2 distance vs. d1 and d2 
derived distances. The experiment is repeated 
with images subjected to translations of 0-6 
pixels (x-axis) to test robustness of the distance 
under translations.

Same, but with 10 labeled examples 
per class.

…both labeled and unlabeled examples 
are translated randomly…so L2 also 
includes some notion of translation (via 
virtual examples).



Image Classification Experiments (4)

Observations:
-As might be expected, the derived distances are better able to accommodate 
image translations than L2 on the whole, and classification accuracy decays 
more gracefully in the derived distance cases as we increase the translation 
size.
-The 2-layer d2 derived distance is seen to generally outperform the 1-layer d1 
derived distance.  Choosing the optimal number of layers is an open problem.
- Even with one canonical example, the derived distance is robust.



Derived Distance: Three-layer String Example

- Consider computing a distance between (DNA) strings with alphabet 
{A,T,G,C}.

- Computing the derived distance involves considering all substrings of a 
given length or set of lengths.

-Transformations include only linear (but possibly circular) shifts along the 
length of the string. Other transformations such as transposition, point 
mutation, insertion, and deletion would be natural choices.

- We define the base distance between two strings of equal length to be 
the fraction of entries that do not match:



ATCACCGATCGAATAG
v
v’
v’’

A
G T
C

AA TT GG CC
AT TG GC
AG TC AC

The derived distance in the case of strings analyzes substrings of decreasing size.
Only circular shifts are allowed in the set of transformations.

Layer 1 Templates: The
string alphabet.

Layer 2 Templates:
All pairs represented 
uniquely at the first level.

Layer 3: 
All triplets…

shifts

Derived Distance: Three-layer String Example (2)



Derived Distance: Three-layer String Example (3)

Suppose the string f to be encoded reads ATTGC. Then for each template
t0, N2

t0(f) is the minimum over {d1(t0, AT), d1(t0, TT), d1(t0, TG), d1(t0, GC)}. The
lower layer distances d1 we need to construct N

2(f) are computed analogously:

d1(f, g) = d0(N
1(f), N1(g))

with
N1
t (f) = min

h∈H
d0(f ◦ h, t)

where H is now the set of restriction functions isolating each single character in
the string f .



Derived Distance: Three-layer String Example (4)

• The neural similarity vector of a 2-char substring is simply a binary vector
marking the presence or absence of each character in the alphabet in the
sub-string.

• Because the substrings under consideration consist of only two characters
and the bottom layer only analyzes (sub)substrings of single characters,
we can see that the order of the characters in the two-digit strings is
irrelevant. The encoding for AC would be the same as that for CA.

• With exhaustive template sets, the two-layer derived distance in this case
can be summarized as encoding which (order-independent) pairs of char-
acters are present in a string.



2 Examples 4 Examples 8 Examples
2 Layer DD 78.43 83.32 86.79
3 Layer DD 80.28 85.69 90.19
4 Layer DD 77.53 86.69 85.96

S-W 76.61 81.52 87.08
L0 49.72 50.24 49.93

Table 1: Average percent classification accuracies for different derived distance
configurations and labeled set sizes. The first three rows give derived distance
based accuracies, while the last two rows give the corresponding Smith-Waterman
accuracy, and the L0 baseline accuracy. The accuracies are averaged over ran-
dom labeled/unlabeled datasets, with 500 trials for the baseline and 2- and 3-layer
derived distance cases, and 20 trials for the 4-layer derived distance cases.

Derived Distance: Three-layer String Example (6)

-Task: distinguish random strings from corrupted versions of a single master string.

- “Corrupted” sequences are randomly (circularly) shifted versions of the master 
sequence.

-Compare to two baseline distances: Number of differing entries (“L0”) and one given 
by the Smith-Waterman alignment score (DP-based alignment algorithm).

1-NN Classification:

- Derived distance is competitive with an algorithm specifically designed to do alignment.



Derived Distance: Complexity

Assuming mi = r ·mi+1, ni = r · ni+1, 0 < r < 1,

At first glance, computing the derived distance between two objects might 
appear to be expensive, but…



Derived Distance: Complexity

The derived distance can actually be computed in linear time using a bottom-up
algorithm…



A Step Further: Learning Invariant Representations: 
Slowness

• Wiskott, Maurer, Caponnetto all use some form of the slowness principle
to design a concrete objective function. Following (Maurer, ALT, 2006):

• “Significant signals should have a large variance.” (this is PCA) ⇒ max-
imize E

£
kPXk2

¤
. P is an orthogonal projection, and X is a (random)

signal.

• “Sensory signals vary more quickly than their significance.” ⇒ minimize

E
h
kPẊk2

i
. In video, pixels change quickly compared to object identities.

• Combining these two ideas, including a tradeoff parameter α, and switch-
ing to an emipirical basis, Maurer’s objective is

max
P
L(P ) =

1

m

mX
i=1

³
αkPXik2 − (1− α)kPẊik2

´

very briefly…



A Step Further: Learning Invariant Representations: 
RCA

• Connections to distance learning and Relevant Components 
Analysis (Bar-Hillel et al., JMLR 2005): 
- (1) Distances between all pairs of points should be infinite.
- (2) Distances between points within a predefined group should be 
small.

|| ·

 

||B is the Mahalanobis distance with weight matrix B, mj are group means
and xji are data points.

The solution is a projection matrix B∝

 

C-1 where

This can be thought of as scaling-down variability within the data by 
assigning lower weight to directions with high variability (due to within- 
class changes).



Summary

-We looked at learning invariant representations using derived distance and, 
briefly, using the slowness principle for the case of sequences.

-Derived distance encodes an object in terms of a hierarchy of associations, 
which can be thought of as a repeatedly applying feature maps to the input 
data.

-Early experiments show promising results….but many interesting questions 
remain:

-What are the optimal parameters for a given task?

-Can hierarchies reduce computational and/or sample complexity?

-Derived distance can serve as a tractable framework within which one might 
try to answer these and other questions.
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