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Plan

e Review of Stability Bounds
e Stability of Tikhonov Regularization Algorithms



Uniform Stability

Review notation: S = {z1,...,2z,}; S = {21,...,2i-1,2, 2i4 1, ---, Zn}

An algorithm A has uniform stability 3 if
V(S,2) € 2" Vi, sup |V (fg,u) — V(fgizw)| < 6.
ucez

Last class: Uniform stability of 3 = O (%) implies good
generalization bounds.

This class: Tikhonov Regularization has uniform stability

of =0 (%)
Reminder: The Tikhonov Regularization algorithm:

fg = arg gmin Z V(f (i), v + Al fll%



Generalization Bounds Via Uniform Stability

If p = % for some k, we have the following bounds from
the last lecture:

k ne?
P (18] — Islfsl > & +¢) < 2exp (—Q(k & M>2) |

Equivalently, with probability 1 — §,

2In(2/5)

I[fs] < Ig|fs] + -I— (2k+M)\/



Lipschitz Loss Functions, 1

We say that a loss function (over a possibly bounded do-
main X') is Lipschitz with Lipschitz constant L if

Vy1,¥2,¥ €Y, [V(y1,¥") — V(y2,9¥)| < Llyr — vol.

Put differently, if we have two functions f; and f», under
an L-Lipschitz loss function,

" V(f1(x),y) = V(f2(x),y)| < L|f1 — f2]co-
X,y

Yet another way to write it:

V(f1,) = V(f2, )loo < LIf1(-) — f2()]so



Lipschitz Loss Functions, II

If a loss function is L-Lipschitz, then closeness of two func-
tions (in Loo norm) implies that they are close in loss.

The converse is false — it is possible for the difference in
loss of two functions to be small, yet the functions to be
far apart (in Lo). Example: constant loss.

The hinge loss and the e-insensitive loss are both L-Lipschitz
with L = 1. The square loss function is L Lipschitz if we
can bound the y values and the f(x) values generated. The
O —1 loss function is not L-Lipschitz at all — an arbitrarily
small change in the function can change the loss by 1:

f1=0, fo=¢ V(f1(x),0) =0, V(f2(z),0) = 1.



Lipschitz Loss Functions for Stability

Assuming L-Lipschitz loss, we transformed a problem of
bounding

sup [V (fs,u) — V(fgiz u)l

ucez
into a problem of bounding [fg — fqiz|co.

As the next step, we bound the above L norm by the
norm in the RKHS assosiated with a kernel K.

For our derivations, we need to make another assumption:
there exists a k satisfying

Vx € X, \/K(X,X) < K.



Relationship Between L and L

Using the reproducing property and the Cauchy-Schwartz
inequality, we can derive the following:

vx [f(x)] = [(K(x-), f())k]

1K (%, ) el Fl
VK (@,), K (2, WIfllx
VEG0)|Ifllx

kI fllk

IA |

IA

Since above inequality holds for all x, we have |f|co < ||f|| K-

Hence, if we can bound the RKHS norm, we can bound
the Lo norm. Note that the converse is not true.

Note that we now transformed the problem to bounding
I fs — fqizllKi-



A Key Lemma

We will prove the following lemma about Tikhonov reg-
ularization:

L|fs — fqizloo
AN

2
1fs = fgizllEe <

This theorem says that when we replace a point in the
training set, the change in the RKHS norm (squared) of
the difference between the two functions cannot be too
large compared to the change in L.

We will first explore the implications of this lemma, and
defer its proof until later.



Bounding 3, 1

Using our lemma and the relation between Lgx and Lo,

L|fS - fsi,Z|OO
AT
Lkl fs = fqizllK
AN

| fs — faizllze <

<

Dividing through by ||fg — fqi:||kx, We derive

/<;L

Ifs = Foicllc < 5



Bounding 3, II

Using again the relationship between Ly and Ly, and the
L Lipschitz condition,

sup |[V(fs(-),:) =V (fgzi(:), )| < Llfs — fgziloo
< Lkl|fs — fgzillk
L2K2
<
- An

5]



Divergences

Suppose we have a convex, differentiable function F', and
we know F'(f1) for some f1. We can *“guess’ F(f>) by
considering a linear approximation to F' at fy:

E(f2) = F(f1) + (fo — f1, VF(f1)).

The Bregman divergence is the error in this linearized ap-
proximation:

dr(f2, f1) = F(f2) — F(f1) — (f2 — f1,. VF(f1)).



Divergences Illustrated

(f2, F'(f2))
ar (fo, 1),

e (L F(f)



Divergences Cont’'d

We will need the following key facts about divergences:

e dp(f2,f1) >0
e If f{ minimizes F, then the gradient is zero, and dp(fo, f1) =

F(f2) — F(f1).

o If ' = A+ B, where A and B are also convex and

differentiable, then dgr(f2, f1) = da(f2, f1) + dp(f2, f1)
(the derivatives add).



The Tikhonov Functionals

We shall consider the Tikhonov functional

1 n
T(f) == V(F(xp),u) + MIfII%,
=1

as well as the component functionals

Vs(f) == 3 VG, )
1=1
and

N = ||f|%

Hence, Tq¢(f) = Vg(f) + AN(f). If the loss function is
convex (in the first variable), then all three functionals are
convex.



A Picture of Tikhonov Regularization
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Proving the Lemma, I

Let fg be the minimizer of T, and let fq, . be the minimizer
of T ., the perturbed data set with (x;,y;) replaced by a

new point z = (x,y). Then

AdN(fgiz, f5) +dN(fs, fgiz)) <
dry(fsiz fs) +dr, (fs, feiz) =
1
E(V(fsi,za ZZ) - V(fS? ZZ) + v(fSa Z) - V(fsi,za Z))
2L|fS - fsz',Z|OO
- .
We conclude that
2L|fS - fsi,z|oo

dN(fSi,Z>fS) _I_dN(fS)fS’i,Z) < \n



Proving the Lemma, II

But what is dN(fS’i,Z7fS)?

We will express our functions as the sum of orthogonal
eigenfunctions in the RKHS:

fs(x) Z cn®n(x)
n=1

foiz(x) = Y cpon(x)
n=1

Once we express a function in this form, we recall that

o0 2

C
IR = > 3%
n

n=1



Proving the Lemma, III

Using this notation, we reexpress the divergence in terms
of the ¢; and ¢:

2
dn(fgier fs) = |fgizlli — Ifslli — (fgie — 3, VIIfsl)
00 C’,,% 00 C,,% 00 / Den

= — — — — ¢, — cn)(—)
B i c’% +c2 —2ccn

n=1 An
_ i (C;v, — Cn)2

n=1 An

2

— ||f5i,z — fSHK

We conclude that

dn(Fgivs £5) + dn (s, fgis) = 2/ fsie — fsl|%



Proving the Lemma, IV

Combining these results proves our Lemma:

dN(fS’i,Za fS) + dN(fS> fgi,z)

. 2
||fsz,z fSHK 2

2L|fS — fsz‘,z|oo
- AN




Bounding the Loss, I

We have shown that Tikhonov regularization with an L-
2.2

Lipschitz loss is g-stable with g = L)\?’?L . If we want to actu-

ally apply the theorems and get the generalization bound,

we need to bound the loss.

Let Cy be the maximum value of the loss when we predict
a value of zero. If we have bounds on X and Y, we can
find Cp.



Bounding the Loss, II

—

Noting that the “all 0" function 0 is always in the RKHS,
we see that

T(fs)
T(0)

EDSRYCICORN
1=1

Ch.

M| fsl|%

Il IA A

T herefore,

2
I fsllF < =

Co
= |fgloo < K||fsllx < %\/7

Since the loss is L-Lipschitz, a bound on |fg|eo implies
boundedness of the loss function.



A Note on )

We have shown that Tikhonov regularization is uniformly
stable with
L2K2
B=-"—"
AN

If we keep M\ fixed as we increase n, the generalization

bound will tighten as O (%) However, keeping X fixed is
equivalent to keeping our hypothesis space fixed. As we
get more data, we want X to get smaller. If A\ gets smaller

too fast, the bounds become trivial.



Tikhonov vs. Ivanov

It is worth noting that Ivanov regularization
. 1 2
= arg min— V(f(x;),vy;
fH,S ngHni; (f(x:),v:)

s.t. Ifll% <

is not uniformly stable with 8 = O <%> essentially because
the constraint bounding the RKHS norm may not be tight.
This is an important distinction between Tikhonov and

Ivanov regularization.



