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About this class

Goal To analyze the limits of learning from examples in
high dimensional spaces. To introduce the
semi-supervised setting and the use of unlabeled
data to learn the intrinsic geometry of a problem.
To define Riemannian Manifolds, Manifold
Laplacians, Graph Laplacians. To introduce a new
class of algorithms based on Manifold
Regularization (LapRLS, LapSVM).
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Unlabeled data

Why using unlabeled data?

labeling is often an “expensive” process
semi-supervised learning is the natural setting for human
learning
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Semi-supervised Setting

u i.i.d. samples drawn on X from the marginal distribution p(x)

{x1, x2, . . . , xu},

only n of which endowed with labels drawn from the conditional
distributions p(y |x)

{y1, y2, . . . , yn}.

The extra u − n unlabeled samples give additional information
about the marginal distribution p(x).
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The importance of unlabeled data
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Curse of dimensionality and p(x)

Assume X is the D-dimensional hypercube [0, 1]D. The worst
case scenario corresponds to uniform marginal distribution
p(x).

Local Methods
A prototype example of the effect of high dimentionality can be
seen in nearest methods techniques. As d increases, local
techniques (eg nearest neighbors) become rapidly ineffective.
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Curse of dimensionality and k-NN

It would seem that with a reasonably large set of training
data, we could always approximate the conditional
expectation by k-nearest-neighbor averaging.
We should be able to find a fairly large set of observations
close to any x ∈ [0, 1]D and average them.
This approach and our intuition break down in high
dimensions.
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Sparse sampling in high dimension

Suppose we send out a cubical neighborhood about one vertex
to capture a fraction r of the observations. Since this
corresponds to a fraction r of the unit volume, the expected
edge length will be

eD(r) = r
1
D .

Already in ten dimensions e10(0.01) = 0.63, that is to capture
1% of the data, we must cover 63% of the range of each input
variable!
No more ”local” neighborhoods!
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Distance vs volume in high dimensions
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Intrinsic dimensionality

Raw format of natural data is often high dimensional, but in
many cases it is the outcome of some process involving only
few degrees of freedom.
Examples:

Acoustic Phonetics ⇒ vocal tract can be modelled as a
sequence of few tubes.

Facial Expressions ⇒ tonus of several facial muscles control
facial expression.

Pose Variations ⇒ several joint angles control the combined
pose of the elbow-wrist-finger system.

Smoothness assumption: y ’s are “smooth” relative to natural
degrees of freedom, not relative to the raw format.
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Manifold embedding
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Riemannian Manifolds

A d-dimensional manifold

M =
⋃
α

Uα

is a mathematical object that generalizes domains in Rd .
Each one of the “patches” Uα which cover M is endowed with a
system of coordinates

α : Uα → Rd .

If two patches Uα and Uβ , overlap, the transition functions

β ◦ α−1 : α(Uα

⋂
Uβ) → Rd

must be smooth (eg. infinitely differentiable).

The Riemannian Manifold inherits from its local system of
coordinates, most geometrical notions available on Rd : metrics,
angles, volumes, etc.
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Manifold’s charts
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Differentiation over manifolds

Since each point x over M is equipped with a local system of
coordinates in Rd (its tangent space), all differential operators
defined on functions over Rd , can be extended to analogous
operators on functions over M.
Gradient: ∇f (x) = ( ∂

∂x1
f (x), . . . , ∂

∂xd
f (x)) ⇒ ∇Mf (x)

Laplacian: 4f (x) = − ∂2

∂x2
1
f (x)− · · · − ∂2

∂x2
d
f (x) ⇒4Mf (x)
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Measuring smoothness over M

Given f : M→ R

∇Mf (x) represents amplitude and direction of variation
around x
S(f ) =

∫
M ‖∇Mf‖2 is a global measure of smoothness for

f
Stokes’ theorem (generalization of integration by parts)
links gradient and Laplacian

S(f ) =

∫
M
‖∇Mf (x)‖2 =

∫
M

f (x)4Mf (x)

L. Rosasco Manifold Regularization



Manifold regularization Belkin, Niyogi,Sindhwani, 04

A new class of techniques which extend standard Tikhonov
regularization over RKHS, introducing the additional regularizer
‖f‖2

I =
∫
M f (x)4Mf (x) to enforce smoothness of solutions relative to

the underlying manifold

f ∗ = arg min
f∈H

1
n

n∑
i=1

V (f (xi), yi) + λA‖f‖2
K + λI

∫
M

f4Mf

λI controls the complexity of the solution in the intrinsic
geometry of M.

λA controls the complexity of the solution in the ambient space.
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Manifold regularization (cont.)

Other natural choices of ‖ · ‖2
I exist

Iterated Laplacians
∫
M f4s

Mf and their linear combinations.
These smoothness penalties are related to Sobolev spaces∫

f (x)4s
Mf (x) ≈

∑
ω∈Z d

‖ω‖2s |̂f (ω)|2

Frobenius norm of the Hessian (the matrix of second derivatives
of f) Hessian Eigenmaps; Donoho, Grimes 03

Diffusion regularizers
∫
M fet4(f ). The semigroup of smoothing

operators G = {e−t4M |t > 0} corresponds to the process of
diffusion (Brownian motion) on the manifold.

L. Rosasco Manifold Regularization



An empirical proxy of the manifold

We cannot compute the intrinsic smoothness penalty

‖f‖2
I =

∫
M

f (x)4Mf (x)

because we don’t know the manifold M and the embedding

Φ : M→ RD.

But we assume that the unlabeled samples are drawn i.i.d.
from the uniform probability distribution over M and then
mapped into RD by Φ
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Neighborhood graph

Our proxy of the manifold is a weighted neighborhood graph
G = (V , E , W ), with vertices V given by the points
{x1, x2, . . . , xu}, edges E defined by one of the two following
adjacency rules

connect xi to its k nearest neighborhoods
connect xi to ε-close points

and weights Wij associated to two connected vertices

Wij = e−
‖xi−xj‖

2

ε

Note: computational complexity O(u2)
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Neighborhood graph (cont.)
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The graph Laplacian

The graph Laplacian over the weighted neighborhood graph
(G, E , W ) is the matrix

Lij = Dii −Wij , Dii =
∑

j

Wij .

L is the discrete counterpart of the manifold Laplacian 4M

fT Lf =
n∑

i,j=1

Wij(fi − fj)
2 ≈

∫
M
‖∇f‖2dp.

Analogous properties of the eigensystem: nonnegative
spectrum, null space
Looking for rigorous convergence results
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A convergence theorem Belkin, Niyogi, 05

Operator L: “out-of-sample extension” of the graph Laplacian L

L(f )(x) =
∑

i

(f (x)− f (xi))e−
‖x−xi‖

2

ε x ∈ X , f : X → R

Theorem: Let the u data points {x1, . . . , xu} be sampled from
the uniform distribution over the embedded d-dimensional
manifold M. Put ε = u−α, with 0 < α < 1

2+d . Then for all
f ∈ C∞ and x ∈ X , there is a constant C, s.t. in probability,

lim
u→∞

C
ε−

d+2
2

u
L(f )(x) = 4Mf (x).
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Laplacian-based regularization algorithms (Belkin et al. 04)

Replacing the unknown manifold Laplacian with the graph
Laplacian ‖f‖2

I = 1
u2 fT Lf, where f is the vector [f (x1), . . . , f (xu)],

we get the minimization problem

f ∗ = arg min
f∈H

1
n

n∑
i=1

V (f (xi), yi) + λA‖f‖2
K +

λI

u2 fT Lf

λI = 0: standard regularization (RLS and SVM)
λA → 0: out-of-sample extension for Graph Regularization
n = 0: unsupervised learning, Spectral Clustering
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The Representer Theorem

Using the same type of reasoning used in Class 3, a
Representer Theorem can be easily proved for the solutions of
Manifold Regularization algorithms.
The expansion range over all the supervised and
unsupervised data points

f (x) =
u∑

j=1

cjK (x , xj).
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LapRLS

Generalizes the usual RLS algorithm to the semi-supervised
setting.
Set V (w , y) = (w − y)2 in the general functional.
By the representer theorem, the minimization problem can be
restated as follows

c∗ = arg min
c∈Ru

1
n

(y− JKc)T (y− JKc) + λAcT Kc +
λI

u2 cT KLKc,

where y is the u-dimensional vector (y1, . . . , yn, 0, . . . , 0), and J
is the u × u matrix diag(1, . . . , 1, 0, . . . , 0).
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LapRLS (cont.)

The functional is differentiable, strictly convex and coercive.
The derivative of the object function vanishes at the minimizer
c∗

1
n

KJ(y− JKc∗) + (λAK +
λIn
u2 KLK)c∗ = 0.

From the relation above and noticing that due to the positivity of
λA, the matrix M defined below, is invertible, we get

c∗ = M−1y,

where

M = JK + λAnI +
λIn2

u2 LK.
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LapSVM

Generalizes the usual SVM algorithm to the semi-supervised
setting.
Set V (w , y) = (1− yw)+ in the general functional above.
Applying the representer theorem, introducing slack variables
and adding the unpenalized bias term b, we easily get the
primal problem

c∗ = arg min
c∈Ru ,ξ∈Rn

1
n

∑n
i=1 ξi + λAcT Kc + λI

u2 cT KLKc

subject to : yi(
∑u

j=1 cjK (xi , xj) + b) ≥ 1− ξi i = 1, . . . , n
ξi ≥ 0 i = 1, . . . , n
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LapSVM: the dual program

Substituting in our expression for c, we are left with the
following “dual” program:

α∗ = arg max
α∈Rn

∑n
i=1 αi − 1

2αT Qα

subject to :
∑n

i=1 yiαi = 0
0 ≤ αi ≤ 1

n i = 1, . . . , n

Here, vQ is the matrix defined by

Q = YJK
(

2λAI + 2
λI

u2 LK
)−1

JT Y.

One can use a standard SVM solver with the matrix Q
above, hence compute c solving a linear system.
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Numerical experiments
http://manifold.cs.uchicago.edu/manifold_regularization

Two Moons Dataset
Handwritten Digit Recognition
Spoken Letter Recognition
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Spectral Properties of the Laplacian

Ideas similar to those described in this class can be used in
other learning tasks. The spectral properties of the (graph-)
Laplacian turns out to be useful:

If M is compact, the operator 4M has a countable sequence of
eigenvectors φk (with non-negative eigenvalues λk ), which is a
complete system of L2(M). If M is connected, the constant
function is the only eigenvector corresponding to null
eigenvalue.
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Manifold Learning

The Laplacian allows to exploit some geometric features of the
manifold.

Dimensionality reduction. If we project the data on the
eigenvectors of the graph Laplacian we obtain the so
called Laplacian eigenmap algorithm. It can be shown that
such a feature map preserves local distances.
Spectral clustering. The smallest non-null eigenvalue of
the Laplacian is the value of the minimum cut on the graph
and the associated eigenvector is the cut.
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