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About this class

Goal To introduce sparsity based regularization with
emphasis on the problem of variable selection. To
discuss its connection to sparse approximation
and describe some of the methods designed to
solve such problems.
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Plan

sparsity based regularization: finite dimensional case
introduction
algorithms
theory

Extension to the infinite dimensional case and sparse
approximation
Other techniques for variable selection
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Sparsity Based Regularization?

interpretabilty of the model: a main goal besides good
prediction is detecting the most discriminative information
in the data.
data driven representation: one can take a large,
redundant set of measurements and then use a data
driven selection scheme.
compression: it is often desirable to have parsimonious
models, that is models requiring a (possibly very) small
number of parameters to be described.

More generally if the target function is sparse enforcing sparsity
of the solution may be a way to avoid overfitting.
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A Useful Example

Biomarker Identification
Set up:
• n patients belonging to 2 groups (say two different diseases)
• p measurements for each patient quantifying the expression
of p genes
Goal:
• learn a classification rule to predict occurrence of the disease
for future patients
• detect which are the genes responsible for the disease

p � n paradigm

typically n is in the order of tens and p of thousands....
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Some Notation

Measurement matrix
Let X be the n × p measurements matrix.

X =

 x1
1 . . . . . . . . . xp

1
...

...
...

...
...

x1
n . . . . . . . . . xp

n


• n is the number of examples
• p is the number of variables
• we denote with X j , j = 1, . . . , p the columns of X
For each patient we have a response (output) y ∈ R or y = ±1.
In particular we are given the responses for the training set

Y = (y1, y2, . . . , yn)
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Approaches to Variable Selection

So far we still have to define what are "relevant" variables.
Different approaches are based on different way to specify what
is relevant.

Filters methods.
Wrappers.
Embedded methods.

We will focus on the latter class of methods.

(see "Introduction to variable and features selection" Guyon and
Elisseeff ’03)
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Embedded Methods

The selection procedure is embedded in the training phase.

An intuition
what happens to the generalization properties of empirical risk
minimization as we discard variables?

if we keep all the variables we probably overfit,
if we take just a few variables we are likely to oversmooth
(in the limit we have a single variable classifier).

We are going to discuss this class of methods in detail.

L. Rosasco Sparsity Based Regularization



Sparse Linear Model

Suppose the output is a linear combination of the variables

f (x) =

p∑
i=1

βixi = 〈β, x〉

each coefficient βi can be seen as a weight on the i-th variable.

Sparsity
We say that a function is sparse if most coefficients in the
above expansion are zero.
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Solving a BIG linear system

In vector notation we can can write the problem as a linear
system of equation

Y = Xβ.

The problem is ill-posed.
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Tikhonov Regularization

Of course we can go back to:

min
β∈Rp

{1
n

n∑
j=1

V (yj ,
〈
β, xj

〉
) + λ

p∑
i=1

β2
i }

How about sparsity?
⇒ in general all the βi in the solution will be different from zero.
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Sparsity

Define the `0-norm (not a real norm) as

‖β‖0 = #{i = 1, . . . , p | βi 6= 0}

It is a measure of how "complex" is f and of how many
variables are important.
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`0 Regularization

If we assume that a few variables are meaningful we can look
for

min
β∈RP

{1
n

n∑
j=1

V (yj ,
〈
β, xj

〉
) + λ ‖β‖0}

Best subset selection is hard!!
⇒ This is as difficult as trying all possible subsets of variables.

Can we find meaningful approximations?
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Approximate solutions

Two main approaches
Approximations exist for various loss functions usually based
on:

1 Convex relaxation.
2 Greedy schemes.

We mostly discuss the first class of methods (and consider the
square loss).
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Convex Relaxation

A natural approximation to `0 regularization is given by:

1
n

n∑
j=1

V (yj ,
〈
β, xj

〉
) + λ ‖β‖1

where ‖β‖1 =
∑p

i=1 |βi |.

If we choose the square loss

1
n

n∑
j=1

(yj −
〈
β, xj

〉
)2 = ‖Y − Xβ‖2

n

such a scheme is called Basis Pursuit or Lasso algorithms.
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What is the difference with Tikhonov regularization?

We have seen that Tikhonov regularization is a good way
to avoid overfitting.
Lasso provides sparse solution Tikhonov regularization
doesn’t.

Why?
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Constrained Minimization

Consider

min
β
{

p∑
i=1

ωj |βi |.}

subject to
‖Y − Xβ‖2

n ≤ R.
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Geometry of the Problem

β1

β2

"1

"2

θ

R

−R
"1 + "2

1
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`q regularization?

Consider a more general penalty of the form

‖β‖q = (

p∑
i=1

|β|q)1/q

(called bridge regression in statistics).
It can be proved that:

limq→0 ‖β‖q → ‖β‖0,
for 0 < q < 1 the norm is not a convex map,
for q = 1 the norm is a convex map and is strictly convex
for q > 1.
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Back to `1 regularization

We focus on the square loss so that we now have to solve

min
β∈Rp

‖Y − βX‖2 + λ ‖β‖1 .

Though the problem is no longer hopeless it is nonlinear.
The functional is convex but not strictly convex, so that the
solution is not unique.
One possible approach relies on linear (or quadratic)
programming techniques.
Using convex analysis tools we can get a simple iterative
algorithms.
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An Iterative Thresholding Algorithm

It can be proved that the following iterative algorithm converges
to the solution βλ of `1 regularization as the number of iteration
increases.

Set βλ
0 = 0 and let

βλ
t = Sλ[βλ

t−1 + τX T (Y − Xβλ
t−1)]

where τ is a normalization constant ensuring τ ‖X‖ ≤ 1 and the
map Sλ is defined component-wise as

Sλ(βi) =


βi + λ if βi < −λ/2
0 if |βi | ≤ λ/2
βi − λ if βi < λ/2

(see Daubechies et al.’05)
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Thresholding Function

Sλ(β)γ

λwγ/2

−λwγ/2

Figure 1. Balancing Principle.

1
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Algorithmics Aspects

Set βλ
0 = 0

for t=1:tmax

βλ
t = Sλ[βλ

t−1 + τX T (Y − Xβλ
t−1)]

The algorithm we just described is very easy to implement
but can be quite heavy from a computational point of view.
The number of iteration t can be stopped when a certain
precision is reached.
The complexity of the algorithm is O(tp2) for each value of
the regularization parameter.
The regularization parameter controls the degree of
sparsity of the solution.
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Some Remarks

About Uniqueness: the solution of `1 regularization is not
unique. Note that the various solution have the same
prediction properties but different selection properties.
Correlated Variables: If we have a group of correlated
variables the algorithm is going to select just one of them.
This can be bad for interpretability but maybe good for
compression.
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Elastic Net Regularization

One possible way to cope with the previous problems is to
consider

min
β∈Rp

‖Y − βX‖2 + λ(α ‖β‖1 + (1− α) ‖β‖2
2).

λ is the regularization parameter.
α controls the amount of sparsity and smoothness.

(Zhu. Hastie ’05; De Mol, De Vito, Rosasco ’07)
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Elastic Net Regularization (cont.)

The `1 term promotes sparsity and the `2 term
smoothness.
The functional is strictly convex: the solution is unique.
A whole group of correlated variables is selected rather
than just one variable in the group.
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Geometry of the Problem
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Greedy Algorithms

Sparsity based regularization is often expansive from the
computational point of view.
In kernel methods one can always work with a matrix of
size min{n, p}, here we have to keep in memory the matrix
X which is n by p.
an alternative approach is given by greed algorithms.
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Greedy Algorithms (cont.)

Very similar techniques have been proposed by different
communities with different names:

statistics - forward stagewise regression,
approximation theory - greedy algorithms,
learning - boosting methods,
signal processing - projection pursuit methods.

The various algorithms are often based on the iteration of the
following steps. After some initialization:

1 selection an element of the dictionary,
2 update of the solution.

These schemes proceed incrementally and are not based on a
global optimization procedure.
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Orthogonal Matching Pursuit

Consider the following iteration.

Set f0 = 0
for t = 1 : tstop
rt = Y − ft−1 ;
t = argmaxj=1,...,p

〈
X j , rt

〉
βt =

〈
rt−1, X t〉

ft = ft−1 + X tβt
end

The number of iterations is the regularization parameter
(early stopping).
Each iteration select one variable.
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What about Theory?

The same kind of approaches were considered in different
domains for different (but related) purposes.

Machine Learning.
Fixed design regression.
Compressed sensing.

Similar theoretical questions but different settings (deterministic
vs stochastics, random design vs fixed design).
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What about Theory? (cont.)

Roughly speaking, the results in fixed design regression prove
that:
If Y = Xβ∗ + ξ, where X is an n by p matrix, ξ ∼ N (0, σ2I), β∗

has at most s non zero coefficients and s ≤ n/2 then∥∥∥βλ − β∗
∥∥∥ ≤ Csσ2 log p.
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