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Learning: Brains and Machines
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machmes

Learning is the gateway to
understanding the brain and to
making intelligent machines.

Problem of learning:

a focus for
o modern math
o computer algorithms
o heuroscience



Learning: much more than memory

 Role of learning (theory and applications in many different
domains) has grown substantially in CS

« Plasticity and learning have a central stage in the
neurosciences

« Until now math and engineering of learning has developed
Independently of neuroscience...but it may begin to change: we
will see in the class the situation in vision...



Learning:
math, engineering, heuroscience

Theorems on foundations of learning:

Learning theory
+ algorithms Predictive algorithms

\

* Bioinformatics

ENGINEERING * Computer vision
APPLICATIONS

- Computer graphics, speech
synthesis, creating a virtual actor

How visual cortex works - and how it
may suggest better computer vision
systems




Class

Rules of the game: problem sets (2)
final project (min =review; max = |. paper)
grading
participation!

Web site: nhttp:/iwww.mit.edu/~9.520/

Slides on the Web site
Staff mailing list is 9.520@mit.edu

Student list will be 9.520students@mit.edu
Please fill form!



http://www.mit.edu/~9.520/

9.520 Statistical Learning Theory and Applications (2007)

10:30 - Simon Laflamme "Online Learning Algorithm for Structural Control using
Magnetorheological Actuators”

- Emily Shen “Time series prediction”

- Zak Stone "Facebook project”

- Jeff Miller “Clustering features in the standard model of cortex”
- Manuel Rivas "Learning Age from Gene Expression Data“

- Demba Ba “Sparse Approximation of the Spectrogram via Matching Pursuits:
Applications to Speech Analysis”

- Nikon Rasumov "Data mining in controlled environment and real data"



9.520 Statistical Learning Theory and Applications (2003)

2:35-2:50 "Learning card playing strategies with SVMs", David
Craft and Timothy Chan

2:50-3:00 "Artificial Markets: Learning to trade using Support
Vector Machines", Adlar Kim

3:00-3:10 "Feature selection: literature review and new
development’’, Wei Wu

3:10—3:25 "Man vs machines: A computational study on face
detection" Thomas Serre



Overview of overview

o The problem of supervised learning: "real” math
behind it

o Examples of engineering applications (from our
group)

o Learning and the brain



Learning from examples: goal is not to memorize but to
generalize, eq predict.
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Given a set of /examples (data) {(X v, ), (X,,V,) (X,,VY )}
11 Y1/ 2V )27 £y Je

Question. find function 7 such that

is a good predictor of y for a future input x (fitting the data is not
enough!): ~
F(x)=y



Binary classification case

High dim.
space
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Reason to learn some learning theory

Applications cannot be carried out by simply using a black box.

What is needed: the right formulation of the problem (which is
helped by knowledge of theory): choice of representation (inputs,
outputs), choice of examples, validate predictivity, do not
datamine

L F(X)=wx+Db



Interesting development: in the last few years he
theoretical foundations of learning have become part of
mainstream mathematics

BULLETIN (New Series) OF THE

AMERICAN MATHEMATICAL SOCIETY
Valume 39, Noamber 1, I’n,gc*: 1-44
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Article elactronically published an Oetobar 5, 20601

[DN THE MATHEMATICAL FOUNDATIONS OF LEARNING

FELIPE CUCKER AND STEVE SMALE

The problem of learmang 15 arguably al the
very core af bhe problem of niclligence,
bath beclogioal and artyfical,

INTRODUCTION

(1) A main theme of this report is 1:].1!'_- 1|:~L1t1|:|113111p of approsimation to learning and
the primary role of sampling (in Fe—tey—to emphasize relations
of the theory of learning N particular, there
are large roles for probability tlmuw as EFﬂ.'sit squares, and for
tools and deas from linear algebra and linear a.u.ﬂv-*.a:-: An advantage of doing this
15 that communication 1= facilitated and the power of core mathematics is more

easily bronght to bear.




predictive

@ -=datafromf

= function f —

= approximation of f

Generalization:

estimating value of function where there are no data (good generalization means
predicting the function well; most important is for empirical or validation error to
be a good proxy of the prediction error)

Regression:  function is real valued

Classification: function is binary



T he learning problem

Thereis an unknown probability distribution on the prod-
uct space Z = X x Y, written pu(z) = pu(x,y). We assume
that X Is a compact domain in Euclidean space and Y a
closed subset of IR.

The training set S = {(x1.y1),..-. Xn,yn)} = {z1,...2n}
consists of n samples drawn i.i.d. from pu.

H is the hypothesis space, a space of functions f: X — Y.

A learning algorithm is a map L : Z" — 'H that looks
at S and selects from H a function fg : x — y such that
fe(x) =y in a predictive way.



Thus....the key requirement (main focus of classical
learning theory) to solve the problem of learning from
examples: generalization

Example:

A standard way to learn fr'om examples is ERM (empirical risk
minimization)

?1' Z V(f(xi),yi)

The problem does not have a predictive solution in general
(just fitting the data does not work). Choosing an appropriate
hypothesis space ~ (for instance a compact set of continuous
functions) can guarantee generalization (how good depends on
the problem and other parameters).



A superficially different requirement for learning to be possible is that
the problem is well-posed (solution exists, stable)

A problem is well-posed if its solution

exists, unique and J. 5. Hadamard, 1865-1963

is stable, eg depends continuously on the data
(here examples)



Thus....two key requirements to solve the problem of learning from
examples:
well-posedness and generalization. How are they related?

Intuition: Consider the standard learning L -
min— > V(f(zi), )
€’ £ =}

/

The main focus of learning theory is predictivity of the
solution eg generalization. The problem is in addition ///-posed.
It was known that by choosing an appropriate hypothesis space
H predictivity is ensured. It was also known that appropriate H
provide well-posedness.

A couple of years ago it was shown that under quite general assumptions
generalization and well-posedness are equivalent, eg one implies the other.

Thus a stable solution is predictive and (for ERM) also viceversa,




Learning theory and natural sciences

Conditions for generalization in learning theory

have deep, almost philosophical, implications:

they may be regarded as conditions that guarantee a
theory to be predictive (that is scientific)



min
feH

%Z V(T(x)-y)+4 Hin

F)=> o K(x,x;)

Implies

Equation includes Regularization Networks (special cases
are splines, Radial Basis Functions and Support Vector
Machines). Function is nonlinear and general approximator...

For a review, see Poggio and Smale, The Mathematics of Learning,

Notices of the AMS, 2003



Another remark: equivalence to networks

Many different V lead to the same solution...

fx)= > cK(x,x)+b

..and can be “written” as
the same type of network..where the
value of K corresponds to the "activity”
of the "unit” and the c. correspond to
(synaptic) "weights”




Winning against the curse of dimensionality:
new research directions in learning

Many processes - physical processes as well as human activities — generate
high-dimensional data. Because of the high dimensionality these data are in
general difficult to analyze: their sample complexity is too high (eg curse of
dimensionality or poverty of stimulus). There are, however, basic properties of
the data generating process that may allow to circumvent the problem of high
dimensionality and make the analysis possible.

A classical example is smoothness - exploited by L2 regularization techniques:
the underlying principle is smoothness of the underlying function space.

Very recently, mathematicians and computer scientists have been uncovering
novel principles that apply to other broad classes of phenomena and allow
circumventing the problems posed by the high dimensionality of the data.



Panning for Gold: The Science and Applications of Learning
from Data

The Team

Stanley Osher (UCLA), Terence Tao (UCLA),
Joseph Teran (UCLA), Partha Niyogi (U. Chicago),
Stephen Smale (TTI-C, U. Chicago), Ingrid Daubechies (Princeton), Olga Troyanskaya (Princeton),
Yann LeCun (NYU), Tomaso Poggio (MIT)



New Research Directions

Theory Theory
of of
Cortex Emergence

~.

Application areas

Vision

Language
Genomics

Neuroscience (physiology+imaging)

/N

Feature Diffusion
Selection, Maps
Compressed
Sensing




What are the principles of learning
from few data in high dimensional spaces?

How might it be possible to make reliable inferences about the underlying phenomena without
running into the curse of dimensionality. There are at least three different points of view from which
to approach this question: smoothness, sparsity, and low dimensional geometry.

* It has long been known that if f belongs to a Sobolev space of order s, then the rate of
convergence for nonparametric learning depends on the ratio of smoothness and dimensionality, eg
functions in a Sobolev space of high order (i.e., smoother functions) are learned more easily. A
more recent development is that the framework of Mercer kernels and Reproducing Kernel Hilbert
Spaces (RKHS) allows one to implicitly capture smoothness classes while allowing for efficient
algorithms based on regularization.

» A second point of view is that the function of interest may not be smooth in a classical sense but
may be sparse in some suitable basis. This includes the application of wavelet based methods for
learning and function approximation as well as recent developments in compressed sensing (L1
sparsity).

* A third and more recent point of view is built around the hypothesis that although natural data lives
in very high dimensional spaces, they concentrate around lower dimensional geometrically
structured objects. The most prominent of these methods assume this lower dimensional object to
be a submanifold and show how to build suitable classes of functions on this submanifold from
randomly sampled data. The topology and geometry of this submanifold may be revealed through
the empirical Laplace operator and the heat kernel on data derived graphs and simplicial
complexes (diffusion maps).



4 /"Regularization A

Bayesian Interpretation
Deep Beliefs Networks

Manifold
Learning

kernel spaces error bounds
& feaures stability & complexity

: : Applications
(SuperVISed) Learnlng vision, neuroscience,
classification, regression speech...

multiclass, feature selection




http://www.mit.edu/~9.520/



http://www.mit.edu/~9.520/

Overview

Supervised learning: real math



Overview of overview

o The problem of supervised learning: "real” math
behind it

o Examples of engineering applications (from our
group)

o Learning and the brain



Artificial Markets
Object categorization
Object identification
Image analysis
Graphics

Text Classification



Learning from examples paradigm

Statistical Learning
Algorithm

Prediction

=)



New feature selection SVM:

Only 38 training examples, 7100 features

AML vs ALL: 40 genes 34/34 correct, O rejects.

5 genes 31/31 correct, 3 rejects of which 1is an error.

Al Memo No.1677
C.B.C.L Paper No.182

Support Vector Machine Classification of Microarray
Data

S. Mukherjee, P. Tamayo, D. Slonim, A. Verri, T. Golub,
J.P. Mesirov, and T. Poggio

Pomeroy, S.L., P. Tamayo, M. Gaasenbeek, L.M. Sturia, M. Angelo, M.E.
McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D.
Zagzag, M.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S.
Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S.
Lander and T.R. Golub. Prediction of Central Nervous System Embryonal
Tumour Outcome Based on Gene Expression, Nature, 2002.

CE R R NN N N R
'Y EX XXX EYXN
o20000Q0® -0
(T ET XX ReN X X
P00V EODODO

W N NN N-R RON |
(TR RN R R NN N

@eP0O0OD HE
A XA AR E X R AR
® 000080
RN N
0O e@




Bioinformatics
Artificial Markets

Object identification
Image analysis
Graphics

Text Classification



Object recognition for computer vision:
(personal) historical perspective
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excellent algorithms in
*Best CVPR’'07 paper 10 yrs ago the past few years...



Examples: Learning Object Detection:
Finding Frontal Faces

« Training Database
e 1000+ Real, 3000+ VIRTUAL
e 50,0000+ Non-Face Pattern

Sung & Poggio 1995



Learning Object Detection:
Finding Frontal Faces ...

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern

Sung, Poggio 1995



Learning Face Detection

Sung, Poggio
1994



Face detection....




Trainable System for Object Detection:
Pedestrian detection - Results

ﬂh.#‘ F‘f .""‘:'-;,'.
. = L " . "'. J'F




The system was tested in a test car (Mercedes)








~10 year old CBCL computer vision work:
SVM-based pedestrian detection system In Mercedes
test car...
now becoming a product (MobilEye)

o o YW
N





eSS

037.0004 DCC/GER

Wir bringen unseren Autos das Sehen bei, weil eine Mutter nicht iiberall sein kann.

Eine Mutter kann ihre Kinder nicht immer beschiitzen. Besonders dann nicht, wenn sie alleine im StraBenverkehr
unterwegs sind. Deshalb arbeiten wir an FuBgéngererkennungs-Systemen fiir unsere Autos, die dem Fahrer
helfen, Menschen auf der StraBe schneller zu erkennen. Innerhalb ven Bruchteilen einer Sekunde warnt das
System den Fahrer, damit er besser reagieren kann. Diese intelligenten Technologien zur Vermeidung van
Unfillen entwickelt die DaimlerChrysler Farschung schon heute. Filr die Automobile von morgen.

Tiefere Einblicke in die Vision vom ,Unfalifreien Fahren' erhalten Sie unter: www.daimlerchrysler.com

DAIMLERCHRYSLER

Answers for questions to came.




People classification/detection: training the
system

o la Q: d
7189 patterns

Representation: overcomplete dictionary of Haar wavelets; high
dimensional feature space (>1300 features)

Vo
Smiilfﬁ

pentium: ||

J

pedestrian detection



Face classification/detection: training the
system

Representation: grey levels (normalized) or overcomplete
dictionary of Haar wavelets

i

pentium: ||

i

face detection



Face identification: training the system

B

Representation: grey levels (normalized) or overcomplete
dictionary of Haar wavelets

i

pentium: ||

i

face identification




What about the model and computer vision?
The street scene project

Source: Bileschi, Wolf & Poggio



This was a project in computer vision
until we found out - as T already mentioned -- that
a separate neuroscience project
was giving us a very good system to solve recognition
problems of this type..more tomorrow in the
neuroscience day!



OUTPUT
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Bioinformatics

Artificial Markets
Object categorization
Object identification
Image analysis

Decoding the Neural Code
Graphics

Text Classification



Another application:
using learning algorithms to decrypt
the brain code

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio,

The McGovern Institute for Brain Research, Department of Brain Sciences
Massachusetts Institute of Technology, Cambridge MA

“J

I H N
department of brain and I I
tive sciences MIT

Science, Nov 4, 2005




Perceived
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| mep-Neuronal pattern
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Statistcal | Predicted [N
object percept:




The end station of the ventral stream
in visual cortex is IT

g command

Categorical judgments, janlye6 m _
decision making ' Simple visual forms,
edges, comers

'I|I'-I1 "o =0 s

-
Ir scdiate visual
«$- o

e
faces, obiects
1-\-"\—_ .
e To spinal cord
e T finigar muscle o e——160=220 ms
180=260 ms




Reading-out the neural code in AIT

B B B B B S B S e

B B E
77objects, B E PR EEBREE
8classes WO OO EBEE S B
= ek aw e e
N el ss o
ee P o v @ o [a & 9]
e e fFfoeee o n

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005




Recording at each recording site during passive viewing

time — 100 ms|100 ms

» 77 visual objects
* 10 presentation repetitions per object
 presentation order randomized and counter-balanced



Example of one AIT cell




Training a classifier on neuronal

activity.
— —
—
—
— —

From a set of data (vectors of activity of n neurons (x) and object label (y)

(X0, Ya)h (X5, Y2 ) s (X0 Y,)

Find (by training) a classifier eg a function #such that ¢ (X) = §

is a good predictor of object label y for a future neuronal activity x



Decoding the neural code ...

population response (using a classifier)

cat/dog

Population activity human face

| ”| || | neuron 1

| toys

I T

food

{1 i
K M
| 1

monkey face

(Y
I
AN ‘ white box contours
| L
I -

Le|ar|r|]|ingl1|:'-llli:||1 hand/body
from (x,y)

pairs oo vehicles

Categorization Y € {1, . ,8}

8 groups



Neuronal population

s Classifier prediction
activity

/ Cateqorization

Vehicle

B .

Video speed: 1 frame/sec

Toy

Body

Human Face
Monkey Face
Vehicle

Food

Box

Cat/Dog

Actual presentation rate: 5 objects/sec




We can decode the brain's code and
read-out
from the cortex
(as from the model, see later)



Results:

reliable object categorization
using ~100 arbitrary AIT sites

* [100-300 ms] interval

50 ms bin size

100 % 1

50 % -

Classification performance

chance (1/8)

0 % -
1 4 16 64 256

Number of sites
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Bioinformatics
Artificial Markets
Object categorization
Object identification
Image analysis

Text Classification



Image Analysis

= Bear (0° view)

= Bear (45° view)




Image Synthesis

UNCONVENTIONAL GRAPHICS

®=0°view =

O = 45° view =



Reconstructed 3D Face Models from 1 image

3D Reconstruction from a Single Image

Blanz and Vetter,
MPI
SigGraph ‘99



Reconstructed 3D Face Models from 1 image

Neue Ansichten aus einem eizelnen Bild

Rekonstruktion Mit Texturextraktion
Vorloge ohne Texturextraktion und Mimik

ea

Blanz and Vetter,
MPI
SigGraph ‘99



V. Blanz, C. Basso,
T. Poggio
and
T. Vetter, 2003




Ezzat, Geiger, Poggio, SigGraph 2002




Trainable Videorealistic Face Animation

1. Learning

System learns from 4 mins
of video the face appearance
(Morphable Model) and the
speech dynamics of the
person

Tony EZZGT,Geiger‘, Poggio, SigGl"Gph 2002

2. Run Time

For any speech input the system
provides as output a synthetic
video stream

Phone Stream
ISIL/Ig/ /lB//,lAE//iAE///?E/ /lJH/liH/ /|JH/?|L/

Trajectory e retic Model
Synthesis Phonetic Models
MMM Image Prototypes




Marylin,
eeeeee



A Turing test: what is real and what is synthetic?

We assessed the realism of the talking face with
psychophysical experiments.

Data suggest that the system passes a visual
version of the Turing test.

Experiment | # subjects | % correct | t | p<
 Single pres. 22 .30 233 [ 0.3
Fast single pres. | 21 32 1% 0.619 | 0.5
" Double pres. 27 16.67% VRN N

Table 1: Levels of correct identification of real and synthetic se-
quences. t represents the value from a standard t-test with signifi-
cance level of p<_.



Overview of overview

o The problem of supervised learning: "real” math

behind it

o Examples of engineering applications (from our
group)

o Learning and the brain



Learning how the brain works

his is the old dream of all philosophers
and more recently of Al:

understand how the brain works,
make intelligent machines



Hopes

 Neuroscience may be beginning to understand how a
part of cortex works, in terms of its information
processing

d As a consequence, we begin to develop software
programs that mimic the abllity of people to recognize complex
Images and understand sounds

 Will neuroscience determine future development of a new Al?



Some numbers

Human Brain
1011 1012 neurons (1 million flies ©)
1014- 10%° synapses

Neuron

Fundamental space dimension: fine dendrites : 0.1 | diameter;

lipid bylayer membrane : 5 nm thick; specific proteins : pumps, channels,
receptors, enzymes

Fundamental time length : 1 msec



The problem: recognition in natural images
(e.g., “Is there an animal in the image?”)




How does visual cortex solve this problem?
How can computers solve this problem?

[ R N e

\ TEO

TF

Desimone & Ungerleider 1989



Learning to recognize objects and the ventral
stream in visual cortex

g command

Categorical judgments, 140=190 m .
decision making ' Simple visual foms,
edges, comers

l :.___.'lll'-ﬂ = 70 ms
o B o O o0
i S rOLDYS, Bhe
H obyect
sl

H“-\_ -
e To spingl cord

g T finger muscle e—160=220 ms
180=260 ms




A “feedforward” version of the problem:
rapid categorization

SHOW RSVP
MOVIE

Biederman 1972; Potter 1975; Thorpe et al 1996



A model of the ventral stream, which is also an algorithm...

Prefrontal
Cortex

FRONTAL-

"WORKING MEMORY

Rostral STS
=
i el

o
o
&)
1]
)
o
_|
m
(s
_|
m
=

PG Cortex

m

A
cece<el| \IN, |

gy
R B

0 @

ventral stream
'what' pathway

dorsal stream
'where' pathway

Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich

Kreiman & Poggio 2005; Serre Oliva Poggio 2007

0o

eo0s oo oo’o% SIS

L
3

."_.‘ ,
sl . 'ﬁ._-“ ‘_"\‘ '_j.
I3 complex cells () Simple cells | TSN L ANe
[ | hy
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Cc2

S2
C1
S1

[software avallable online]



...solves” the problem
(if the mask forces feedforward processing)...

e d'~ standardized error
rate

* the higher the d’, the
better the performance

Performance (d)

N
.

N
=

i
=

=
5

Model 82%

Human 80%

- = Human-observers

Il | | L
1

I 1 1
Head Close- Medium- Far-
body body body

Y —

Serre Oliva & Poggio 2007



Extensive comparison w| neural data

V1:

» Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)
 MAX operation in subset of complex cells (Lampl et al 2004)

V4.

* Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)

« MAX operation (Gawne et al 2002)

» Two-spot interaction (Freiwald et al 2005)

* Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu et al., 2007)
* Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

IT:

* Tuning and invariance properties (Logothetis et al 1995)

« Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)

* Read out data (Hung Kreiman Poggio & DiCarlo 2005)

» Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

Human:
* Rapid categorization (Serre Oliva Poggio 2007)
* Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)



an unusual, hierarchical architecture
with unsupervised and supervised learning
and learning of invariances...




Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale

How then do the learning machines described in the theory compare with brains?

0 One of the most obvious differences is the ability of people and animals to
learn from very few examples.

O A comparison with real brains offers another, related, challenge to learning theory. The “learning algorithms”
we have described in this paper correspond to one-layer architectures. Are hierarchical architectures

with more layers justifiable in terms of learning theory?

a Why hierarchies? For instance, the lowest levels of the hierarchy may represent a dictionary of features
that can be shared across multiple classification tasks.

0 There may also be the more fundamental issue of S@Mple complexity. Thus our ability of learning from
just a few examples, and its limitations, may be related to the hierarchical architecture of cortex.



Formalizing the hierarchy: towards a theory

I!l 1

Figure 1: Nested d

Axiom: foh:v — [0, 1]isin Im(v)if f € I'm(v")and h € H,
that is the restriction of an image is an image and similarly for H'. Thus

foh:v—[0,1] € Im(v)it f € Im(v')and h € H,
foh:v'—[0,1] € Im(v")if f € Im(R)and b’ = H".

Smale, S., T. Poggio, A.
Caponnetto, and J. Bouvrie.
Derived Distance: towards a
mathematical theory of
visual cortex, CBCL Paper,
Massachusetts Institute of
Technology, Cambridge,
MA, November, 2007.



http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf

It IS just possible that the brain ....

...will tell us more learning theory!
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