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Learning: Brains and Machines

Learning is the gateway to 
understanding the brain and to 
making intelligent machines. 

Problem of learning: 
a focus for 

o modern math
o computer algorithms
o neuroscience



Learning: much more than memory

• Role of learning (theory and applications in many different 
domains) has grown substantially in CS

• Plasticity and learning have a central stage in the 
neurosciences

• Until now math and engineering of learning has developed 
independently of neuroscience…but it may begin to change: we 
will see in the class the situation in vision…



Learning theory
+ algorithms

Computational
Neuroscience: 

models+experiments

ENGINEERING 
APPLICATIONS

• Bioinformatics
• Computer vision
•

 

Computer graphics, speech     
synthesis, creating a virtual actor

How visual cortex works –

 

and how it 
may suggest better computer vision 
systems

Learning:
 math, engineering, neuroscience
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Theorems on foundations of learning:

Predictive algorithms



Class

Rules of the game: problem sets (2)
final project (min = review; max = j. paper)
grading
participation!

Web site: http://www.mit.edu/~9.520/

Slides on the Web site
Staff mailing list is 9.520@mit.edu 
Student list will be 9.520students@mit.edu
Please fill form!

http://www.mit.edu/~9.520/


9.520 Statistical Learning Theory and Applications (2007) 
Class 26: Project presentations (past examples)

10:30    -

 

Simon Laflamme

 

“Online Learning Algorithm for Structural Control using 
Magnetorheological Actuators”

- Emily Shen “Time series prediction”

-

 

Zak Stone “Facebook project”

- Jeff Miller “Clustering features in the standard model of cortex”

- Manuel Rivas "Learning Age from Gene Expression Data“

- Demba Ba “Sparse Approximation of the Spectrogram via Matching Pursuits: 
Applications to Speech Analysis”

- Nikon Rasumov "Data mining in controlled environment and real data"



9.520 Statistical Learning Theory and Applications (2003) 
Class 26: Project presentations (past examples)

2:35-2:50 "Learning card playing strategies with SVMs", David 
Craft and Timothy Chan

2:50-3:00 "Artificial Markets: Learning to trade using Support 
Vector Machines“, Adlar

 
Kim

3:00-3:10 "Feature selection: literature review and new 
development'‘, Wei Wu

3:10—3:25 "Man vs
 

machines: A computational study on face 
detection" Thomas Serre



Overview of overview

o  o  The problem of sThe problem of supervised learning: “real”
 

math 
behind it

o   Examples of engineering applications (from our 
group)

o   Learning and the brain Learning and the brain 



Learning from examples: goal is not to memorize but to 
generalize, eg predict.

INPUT OUTPUTf
Given Given a set of a set of ll examples (data)examples (data)

QuestionQuestion: find function : find function ff such that such that 

is a is a good predictorgood predictor of of yy for a for a futurefuture input input x (fitting the data is x (fitting the data is not not 
enough!):enough!):

yxf ˆ)( =

{ }),(...,,),(),,( 2211 ll yxyxyx



Binary classification case

(1,13,(1,13,……))

(92,10,(92,10,……))
(41,11,(41,11,……))

(19,3,(19,3,……))

(4,24,(4,24,……))
(7,33,(7,33,……))

(4,71,(4,71,……))

decision  decision  
boundaryboundary

High dim. High dim. 
spacespace



Reason to learn some learning theory

bf += wxx)(

Applications cannot be carried out by simply using a black box. 

What is needed: the right formulation of the problem (which is 
helped by knowledge of theory): choice of representation (inputs, 
outputs), choice of examples, validate predictivity, do not 
datamine

…



Interesting development: in the last few years he Interesting development: in the last few years he 
theoretical foundations of learning have become part of theoretical foundations of learning have become part of 

mainstream mathematicsmainstream mathematics



y

x

= data from f

= approximation of   f
= function f

Generalization:  
estimating value of function where there are no data (good generalization means 
predicting the function well; most important is for empirical or validation error to 
be a good proxy of the prediction error)

Regression:      function is real valued

Classification:   function is binary

Learning from examples: predictive, multivariate 
function estimation from sparse data 

(not just curve fitting) 





Thus….the key requirement (main focus of classical 
learning theory) to solve the problem of learning from 

examples: generalization

Example:
A standard way to learn from examples is ERM (empirical risk 
minimization) 

The problem does not have a predictive solution in general 
(just fitting the data does not work). Choosing an appropriate 
hypothesis space H (for instance a compact set of continuous 
functions) can guarantee generalization (how good depends on 
the problem and other parameters).



J. S. Hadamard, 1865-1963

A problem is well-posed if its solution

exists, unique and 

is stable, eg
 

depends continuously on the data 
(here examples) 

A superficially different requirement for learning to be possible is that 
the problem is well-posed (solution exists, stable)



Thus….two key requirements to solve the problem of learning from 
examples: 

well-posedness and generalization. How are they related?

Intuition: Consider the standard learning algorithm, i.e. ERM 

The main focus of learning theory is predictivity of the 
solution eg

 
generalization. The problem is in addition ill-posed. 

It was known that by choosing an appropriate hypothesis space 
H predictivity

 
is ensured. It was also known that appropriate H 

provide well-posedness. 

A couple of years ago it was shown that under quite general assumptions 

generalization and well-posedness are equivalent, eg one implies the other.

Thus a stable solution is  predictive and (for ERM) also  viceversa.



Learning theory and natural sciences

Conditions for generalization
 

in learning theory

have deep, almost philosophical, implications:

they may be regarded as conditions that guarantee a 
theory

 
to be predictive (that is scientific) 



We have used a simple  algorithm 
--

 

that ensures generalization --

 
in most of our applications…

For a review, see Poggio and Smale, The Mathematics of Learning, 
Notices of the AMS, 2003

Equation includes Regularization Networks (special cases 
are splines, Radial Basis Functions and Support Vector 
Machines). Function is nonlinear and general approximator…
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…and can be “written”
 

as 
the same type of  network…where the 
value of K corresponds to the “activity”

 of the “unit”
 

and the     correspond to 
(synaptic) “weights”

Another remark: equivalence to networks
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Winning against the curse of dimensionality: 
new research directions in learning

Many processes - physical processes as well as human activities  – generate 
high-dimensional data. Because of the high dimensionality these data are in 
general difficult to analyze: their sample complexity is too high (eg curse of 
dimensionality or poverty of stimulus). There are, however, basic properties of 
the data generating process that may allow to circumvent the problem of high 
dimensionality and make the analysis possible. 

A classical example is smoothness - exploited by L2 regularization techniques: 
the underlying principle is smoothness of the underlying function space.

Very recently, mathematicians and computer scientists have been uncovering 
novel principles that apply to other broad classes of phenomena and allow 
circumventing the problems posed by the high dimensionality of the data. 



Panning for Gold: The Science and Applications of Learning 
from Data

The Team

Stanley Osher (UCLA), Terence Tao (UCLA),
Joseph Teran (UCLA), Partha Niyogi (U. Chicago), 

Stephen Smale (TTI-C, U. Chicago), Ingrid Daubechies (Princeton), Olga Troyanskaya (Princeton), 
Yann LeCun (NYU), Tomaso Poggio (MIT)



New Research Directions



What are the principles of learning 
from few data in high dimensional spaces?

How might it be possible to make reliable inferences about the underlying phenomena without 
running into the curse of dimensionality. There are at least three different points of view from which 
to approach this question: smoothness, sparsity, and low dimensional geometry. 
• It has long been known that if f belongs to a Sobolev space of order s, then the rate of 
convergence for nonparametric learning depends on the ratio of smoothness and dimensionality, eg 
functions in a Sobolev space of high order (i.e., smoother functions) are learned more easily. A 
more recent development is that the framework of Mercer kernels and Reproducing Kernel Hilbert 
Spaces (RKHS) allows one to implicitly capture smoothness classes while allowing for efficient 
algorithms based on regularization.
• A second point of view is that the function of interest may not be smooth in a classical sense but 
may be sparse in some suitable basis. This includes the application of wavelet based methods for 
learning and function approximation as well as recent developments in compressed sensing (L1 
sparsity).
• A third and more recent point of view is built around the hypothesis that although natural data lives 
in very high dimensional spaces, they concentrate around lower dimensional geometrically 
structured objects. The most prominent of these methods assume this lower dimensional object to 
be a submanifold and show how to build suitable classes of functions on this submanifold from 
randomly sampled data. The topology and geometry of this submanifold may be revealed through 
the empirical Laplace operator and the heat kernel on data derived graphs and simplicial 
complexes (diffusion maps).





http://www.mit.edu/~9.520/

http://www.mit.edu/~9.520/


Overview 

o  o  Supervised learning: real mathSupervised learning: real math

o  Examples of recent and ongoing ino  Examples of recent and ongoing in--house engineering house engineering 
applicationsapplications



Overview of overview

o  o  The problem of sThe problem of supervised learning: “real”
 

math 
behind it

o   Examples of engineering applications (from our 
group)

o   Learning and the brain Learning and the brain 



Learning from Examples: engineering 
applications

Bioinformatics 
Artificial Markets
Object categorization
Object identification 
Image analysis
Graphics
Text Classification
…..

INPUTINPUT OUTPUTOUTPUT



Learning from examples paradigm

Examples

Prediction  Statistical Learning 
Algorithm

Prediction

New sample

Bioinformatics application: predicting type of 
cancer from DNA chips signals



Bioinformatics application: predicting type of 
cancer from DNA chips

New feature selection SVM:

Only 38 training examples, 7100 features

AML vs

 

ALL: 40 genes 34/34 correct, 0 rejects.
5 genes 31/31 correct, 3 rejects of which 1 is an error.

Pomeroy, S.L., P. Tamayo, M. Gaasenbeek, L.M. Sturia, M. Angelo, M.E. 
McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. 
Zagzag, M.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S. 
Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. 
Lander and T.R. Golub. Prediction of Central Nervous System Embryonal 
Tumour Outcome Based on Gene Expression, Nature, 2002. 



Learning from Examples: engineering 
applications

Bioinformatics 
Artificial Markets
Object categorization
Object identification 
Image analysis
Graphics
Text Classification
…..

INPUTINPUT OUTPUTOUTPUT



Object recognition for computer vision: 
(personal) historical perspective
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Examples: Learning Object Detection: 
Finding Frontal Faces

• Training Database
• 1000+ Real, 3000+ VIRTUAL
• 50,0000+ Non-Face Pattern

Sung & Poggio 1995



Learning Object Detection: 
Finding Frontal Faces ...

Training Database
1000+ Real, 3000+ VIRTUAL
50,0000+ Non-Face Pattern

Sung, Poggio 1995



Learning Face Detection

Sung, Poggio
1994



Face detection:…



Trainable System for  Object Detection: 
Pedestrian detection -

 
Results

Papageorgiou

 

and Poggio, 1998



The system was tested in a test car (Mercedes)






~10 year old CBCL computer vision work: 
SVM-based pedestrian detection system  in Mercedes 

test car… 
now becoming a product (MobilEye)






People classification/detection: training the 
system

Representation: overcomplete dictionary of Haar wavelets;  high
dimensional feature space (>1300 features)

. . . . . .

pedestrian detection
 

system 

Core learning algorithm:
Support Vector Machine
classifier

1848 patterns 7189 patterns



Face classification/detection: training the 
system

Representation: grey levels (normalized) or overcomplete 
dictionary of Haar wavelets

. . . . . .

face detection
 

system 

Core learning algorithm:
Support Vector Machine
classifier



Face identification: training the system

Representation: grey levels (normalized) or overcomplete 
dictionary of Haar wavelets

. . . . . .

face identification
 

system 

Core learning algorithm:
Support Vector Machine
classifier



Source: Bileschi, Wolf & Poggio

What about the model and computer vision? 
The street scene project



This was a project in computer vision 
until we found out –

 
as I already mentioned --

 
that 

a separate neuroscience project 
was giving us a very good system to solve recognition 

problems of this type…more tomorrow in the 
neuroscience day!



Learning from Examples: engineering 
applications

Bioinformatics 
Artificial Markets
Object categorization
Object identification 
Image analysis
Decoding the Neural Code
Graphics
Text Classification
…..

INPUTINPUT OUTPUTOUTPUT



Another application:  
using learning algorithms to decrypt

 the brain code

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, 

The McGovern Institute for Brain Research, Department of Brain Sciences 
Massachusetts Institute of Technology, Cambridge MA

Science, Nov 4, 2005



Goal  (analysis): 
Can we “read-out” the subject’s 
object percept?

Goal 2 (synthesis): 
Can we “write-in” 
(induce) an object percept?

Neovision



The end station of the ventral stream 
in visual cortex is IT



77 objects, 
8 classes

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005

Reading-out the neural code in AIT



Recording at each recording site during passive viewing

100 ms 100 ms

• 77 visual objects
• 10 presentation repetitions per object
• presentation order randomized and counter-balanced

time



Example of one AIT cell



Training a classifier on neuronal 
activity.

INPUT OUTPUTf
From a set of data (vectors of activity of n neurons (x)  and obFrom a set of data (vectors of activity of n neurons (x)  and object label (y)ject label (y)

Find (by training) a classifier Find (by training) a classifier egeg

 

a function a function ff such that such that 

is a is a good predictorgood predictor of object label of object label yy for a for a futurefuture neuronal activity neuronal activity xx

yxf ˆ)( =

{ }),(...,,),(),,( 2211 ll yxyxyx



Decoding the neural code … 
population response (using a classifier)

x

Learning 
from (x,y) 
pairs

y ∈

 

{1,…,8}



Categorization

• Toy

• Body

• Human Face

• Monkey Face

• Vehicle

• Food

• Box

• Cat/Dog

Video speed: 1 frame/sec 
Actual presentation rate: 5 objects/sec

Neuronal population 
activity Classifier prediction

Hung*, Kreiman, Poggio, DiCarlo. Science 2005




We can decode the brain’s code and
read-out 

from the cortex 
(as from the model, see later)



Results: 

reliable object categorization 
using ~100 arbitrary AIT sites

Mean single trial performance

• [100-300 ms] interval

• 50 ms bin size



Learning from Examples: engineering 
applications

Bioinformatics 
Artificial Markets
Object categorization
Object identification 
Image analysis
Image synthesis, eg

 
Graphics

Text Classification
…..

INPUTINPUT OUTPUTOUTPUT



Image Analysis

⇒ Bear (0° view)

⇒ Bear (45° view)



IAP, 2007

Image Synthesis

UNCONVENTIONAL GRAPHICS

Θ = 0° view ⇒

Θ = 45° view ⇒



Blanz and Vetter,
MPI
SigGraph ‘99

Reconstructed 3D Face Models from 1 image



Blanz and Vetter,
MPI
SigGraph ‘99

Reconstructed 3D Face Models from 1 image



V. Blanz, C. Basso, 
T. Poggio

and 
T. Vetter, 2003

Vermeer,
Tischbein,
raffaello,
Hopper



Extending the same basic learning techniques (in 2D): Trainable Videorealistic

 

Face 
Animation

 
(voice is real, video is synthetic)

Ezzat,

 

Geiger, Poggio, SigGraph

 

2002




Trainable Videorealistic

 

Face Animation

/B/ /AE/ /AE/ /JH//SIL/ /B/ /AE/ /JH/ /JH//SIL/

Phone Stream

Trajectory 
Synthesis

MMM

Phonetic Models

Image Prototypes

1. Learning

System learns from 4 mins
 of video the face appearance 

(Morphable
 

Model) and the 
speech dynamics of the 
person

Tony Ezzat,Geiger, Poggio, SigGraph

 

2002

2. Run Time

For any speech input the system 
provides as output a synthetic 
video stream



Movies
Marylin,
Rehema



A Turing test: what is real and what is synthetic?

We  assessed the realism of the talking face  with 
psychophysical experiments.

Data suggest that the system passes a visual  
version of the Turing test.



Overview of overview

o  o  The problem of sThe problem of supervised learning: “real”
 

math 
behind it

o   Examples of engineering applications (from our 
group)

o   Learning and the brainLearning and the brain



This is the old dream of all philosophers 
and more recently of AI: 

understand how the brain works, 
make intelligent machines 

Learning how the brain works



� Neuroscience may be beginning to understand how a 
part of cortex works, in terms of its information 
processing

� As a consequence, we begin to develop software 
programs that mimic the ability of people to recognize complex 
images and understand sounds

�Will neuroscience determine future development of a new AI?

Hopes



Human Brain
1011… 1012 neurons (1 million flies ☺)
1014- 1015 synapses

Neuron
Fundamental space dimension: fine dendrites : 0.1 µ diameter; 

lipid bylayer membrane : 5 nm thick; specific proteins : pumps, channels, 
receptors, enzymes

Fundamental time length : 1 msec

Some numbers



The problem: recognition in natural images 
(e.g., “is there an animal in the image?”)



How does visual cortex solve this problem? 
How can computers solve this problem?

Desimone & Ungerleider 1989

dorsal 
stream:
“where”

ventral 
stream:
“what”



Learning to recognize objects and the ventral 
stream in visual cortex



A “feedforward” version of the problem: 
rapid categorization

Biederman 1972; Potter 1975; Thorpe et al 1996

SHOW RSVP 
MOVIE



Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich 
Kreiman & Poggio 2005; Serre Oliva Poggio 2007

*Modified from (Gross, 1998)

A model of the ventral stream, which is also an algorithm…

[software available online]



…”solves” the problem 
(if the mask forces feedforward processing)…

human- 
observers (n 
= 24) 80%

Model 82%

Serre Oliva & Poggio 2007

• d’~ standardized error 
rate 
• the higher the d’, the 
better the performance

Human 80%



• V1:
• Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)
• MAX operation in subset of complex cells (Lampl et al 2004)

• V4:
• Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)
• MAX operation (Gawne et al 2002)
• Two-spot interaction (Freiwald et al 2005)
• Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu et al., 2007)
• Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

• IT:
• Tuning and invariance properties (Logothetis et al 1995)
• Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)
• Read out data (Hung Kreiman Poggio & DiCarlo 2005)
• Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

• Human:
• Rapid categorization (Serre Oliva Poggio 2007)
• Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)

Extensive comparison w| neural data



A new part in this course: 
neuroscience: a challenge for learning theory:

an unusual, hierarchical architecture
with unsupervised and supervised learning

and learning of invariances…



How then do the learning machines described in the theory compare with brains? 

�One of the most obvious differences is the ability of people and animals to 
learn from very few examples.

� A comparison with real brains offers another,  related, challenge to learning theory. The “learning algorithms”
we have described in this paper correspond to one-layer architectures. Are hierarchical architectures 
with more layers justifiable in terms of learning theory?

�Why hierarchies? For instance, the lowest levels of the hierarchy may represent a dictionary of features 
that can be shared across multiple classification tasks.

� There may also be the more fundamental issue of sample complexity. Thus our ability of learning from 
just a few examples, and its limitations, may be related to the hierarchical architecture of cortex. 

Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale



Formalizing the hierarchy: towards a theory

Smale, S., T. Poggio, A. 
Caponnetto, and J. Bouvrie. 
Derived Distance: towards a 
mathematical theory of 
visual cortex, CBCL Paper, 
Massachusetts Institute of 
Technology, Cambridge, 
MA, November, 2007. 

http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf
http://cbcl.mit.edu/publications/ps/DerivedDistance_v20.pdf


It is just possible that the brain ….

…will tell us more  learning theory!
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