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� Class 17: “coarse” description of

--a model that accounts for properties of neurons in 
the visual cortex

--a model that accounts for human recognition of 
complex images

� Class 18: “finer” level of description and questions

� Class 20: Mathematical framework: towards a theory of 
learning in cortex

Plan for class 16 and 21 



Motivation for studying vision: 
trying to understand how the brain works

• Old dream of all 
philosophers and more 
recently of AI: 
– understand how the 

brain works
– make intelligent 

machines 



How then do the learning machines described in the theory compare with brains? 

�One of the most obvious differences is the ability of people and animals to 
learn from very few examples. The algorithms we have described can learn an object recognition 
task from a few thousand labeled images but a child, or even a monkey, can learn the same task from just a few 
examples. Thus an important area for future theoretical and experimental work is learning from partially labeled 
examples 

� A comparison with real brains offers another,  related, challenge to learning theory. The “learning algorithms”
we have described in this paper correspond to one-layer architectures. Are hierarchical architectures 
with more layers justifiable in terms of learning theory? It seems that the learning theory of 
the type we have outlined does not offer any general argument in favor of hierarchical learning machines for 
regression or classification. 

�Why hierarchies? There may be reasons of efficiency – computational speed and use of computational 
resources. For instance, the lowest levels of the hierarchy may represent a dictionary of features that can be 
shared across multiple classification tasks.

� There may also be the more fundamental issue of sample complexity. Learning theory shows that the 
difficulty of a learning task depends on the size of the required hypothesis space. This complexity determines in 
turn how many training examples are needed to achieve a given level of generalization error. Thus our ability of 
learning from just a few examples, and its limitations, may be related to the hierarchical architecture of cortex. 

Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale



This tutorial: 
using a class of models to summarize/interpret 

experimental results…with caveats:

• Models are cartoons of reality, eg Bohr’s model of 
the hydrogen atom

• All models are “wrong”

• Some models can be useful summaries of data and 
some can be a good starting point for more 
complete theories



1. Problem of visual recognition, visual cortex
2. Historical background
3. Neurons and areas in the visual system
4. Data and feedforward hierarchical models
5. What is next?



The problem: recognition in natural images 
(e.g., “is there an animal in the image?”)



How does visual cortex solve this problem? 
How can computers solve this problem?

Desimone & Ungerleider 1989

dorsal 
stream:
“where”

ventral 
stream:
“what”



A “feedforward” version of the problem: 
rapid categorization (RVSP)

Biederman 1972; Potter 1975; Thorpe et al 1996




Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich 
Kreiman & Poggio 2005; Serre Oliva Poggio 2007

*Modified from (Gross, 1998)

A model of the ventral stream, which is also a hierarchical algorithm…

[software available online]



…”solves” the problem 
(if the mask forces feedforward processing)…

human- 
observers (n 
= 24) 80%

Model 82%

Serre Oliva & Poggio 2007

• d’~ standardized error 
rate 
• the higher the d’, the 
better the performance

Human 80%



1. Problem of visual recognition, visual cortex
2. Historical background
3. Neurons and areas in the visual system
4. Data and feedforward hierarchical models
5. What is next?



Object recognition for computer vision: 
(personal) historical perspective
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excellent algorithms in 
the past few years…

…



Examples: Learning Object Detection: 
Finding Frontal Faces

• Training Database
• 1000+ Real, 3000+ VIRTUAL
• 50,0000+ Non-Face Pattern

Sung & Poggio 1995



~10 year old CBCL computer vision work: 
SVM-based pedestrian detection system  in Mercedes 

test car… 
now becoming a product (MobilEye)




Object recognition in cortex: 
Historical perspective
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progress in the 
past 10 yrs



Some personal history: 
First step in developing a model: 

learning to recognize 3D objects in  IT cortex

Poggio & Edelman 1990

Examples of Visual Stimuli



An idea for a module for view-invariant 
identification

Architecture that 
accounts for 
invariances to 3D 
effects (>1 view 
needed to learn!)

Regularization 
Network (GRBF)
with Gaussian kernels

View Angle

VIEW- 
INVARIANT, 

OBJECT- 
SPECIFIC

UNIT

Prediction: 
neurons become 
view-tuned 
through learning

Poggio & Edelman 1990



Learning to Recognize 3D Objects in  IT 
Cortex

Logothetis Pauls & Poggio 1995

Examples of Visual Stimuli

After human psychophysics 
(Buelthoff, Edelman, Tarr, 
Sinha, …), which supports 
models based on view-tuned 
units... 

… physiology!



Recording Sites in Anterior IT

LUN
LAT

IOS

STS

AMTS
LAT
STS

AMTS

Ho=0

Logothetis, Pauls & Poggio 1995

…neurons tuned to 
faces are intermingled 

nearby….



Neurons tuned to object  views, 
as predicted by model!

Logothetis Pauls & Poggio 1995



A “View-Tuned” IT Cell
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But also view-invariant object-specific neurons 
(5 of them over 1000 recordings)

Logothetis Pauls & Poggio 1995



Scale Invariant Responses of an IT Neuron
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View-tuned cells: 
scale invariance (one training view only) motivates present model

Logothetis Pauls & Poggio 1995



The “HMAX” model

Riesenhuber & Poggio 1999, 2000



How to obtain selectivity and invariance: 
from “HMAX” to the model now…

Riesenhuber & Poggio 1999, 2000;  
Serre Kouh Cadieu Knoblich Kreiman & 
Poggio 2005; Serre Oliva Poggio 2007



1. Problem of visual recognition, visual cortex
2. Historical background
3. Neurons and areas in the visual system
4. Data and feedforward hierarchical models
5. What is next?



Neuron basics

spikes

INPUT= pulses or 
graded potentials

COMPUTATION 
= Analog

OUTPUT = 
Chemical



Some numbers

• Human Brain
– 1011-1012 neurons (1 million flies ☺)
– 1014- 1015 synapses

• Neuron
– Fundamental space dimensions: 

• fine dendrites : 0.1 µ diameter; lipid bilayer membrane : 5 nm 
thick; specific proteins : pumps, channels, receptors, 
enzymes

– Fundamental time length : 1 msec



V1: hierarchy of simple and complex cells

LGN-type 
cells

Simple 
cells

Complex 
cells

(Hubel & Wiesel 1959)



V1: Orientation selectivity

Hubel & Wiesel 
movie (later)



(Thorpe and Fabre-Thorpe, 2001)



Reproduced from (Kobatake & Tanaka, 1994)

Beyond V1: A gradual increase in the 
receptive field size and in the complexity of 

the preferred stimulus



AIT: Face cells

Reproduced from (Desimone et al. 1984)



1. Problem of visual recognition, visual cortex
2. Historical background
3. Neurons and areas in the visual system
4. Data and feedforward hierarchical models
5. What is next?



Source: Lennie, Maunsell, Movshon

The ventral stream



(Thorpe and Fabre-Thorpe, 2001)

We consider feedforward architecture 
only



Our present model of the ventral stream: 
feedforward, accounting only for “immediate 

recognition”

• It is in the family of “Hubel-Wiesel” models (Hubel & 
Wiesel, 1959; Fukushima, 1980; Oram & Perrett, 1993, Wallis & Rolls, 1997; Riesenhuber & 
Poggio, 1999; Thorpe, 2002; Ullman et al., 2002; Mel, 1997; Wersing and Koerner, 2003; LeCun 
et al 1998; Amit & Mascaro 2003; Deco & Rolls 2006…)

• As a biological model of object recognition in the 
ventral stream it is perhaps the most quantitative 
and faithful to known neuroscience (though 
many details/facts are unknown or still to be 
incorporated)



Two key computations, 
suggested by physiology

Unit types Pooling Computation Operation

Simple 
Selectivity / 

template 
matching

Gaussian- 
tuning / 

AND-like

Complex Invariance Soft-max / 
or-like



¾Max-like operation (or-like)

¾Complex units

¾Gaussian-like tuning 
operation (and-like)

¾Simple units



Gaussian tuning

Gaussian tuning in IT 
around 3D views

Logothetis Pauls & Poggio 1995

Gaussian tuning in 
V1 for orientation

Hubel & Wiesel 1958



Max-like operation

Max-like behavior in V1

Lampl Ferster Poggio & Riesenhuber 2004 
see also Finn Prieber & Ferster 2007

Gawne & Martin 2002

Max-like behavior in V4



(Knoblich Koch Poggio in prep; Kouh & Poggio 2007; Knoblich Bouvrie Poggio 2007)

Plausible biophysical implementations

• Max and Gaussian-like tuning 
can be approximated with 
same canonical circuit using 
shunting inhibition. Tuning (eg 
“center” of the Gaussian) 
corresponds to synaptic 
weights.



Of the same form as model 
of MT (Rust et al., Nature 
Neuroscience, 2007

Can be implemented by 
shunting inhibition (Grossberg 
1973, Reichardt et al. 1983, 
Carandini and Heeger, 1994) 
and spike threshold variability 
(Anderson et al. 2000, Miller 
and Troyer, 2002)

Adelson and Bergen (see also 
Hassenstein and Reichardt, 
1956)

Basic circuit is closely related to other models



• Generic, overcomplete 
dictionary of reusable shape 
components (from V1 to IT) 
provide unique representation 
– Unsupervised learning (from 

~10,000 natural images) during a 
developmental-like stage

see also (Foldiak 1991; Perrett et al 1984;  Wallis & Rolls, 
1997; Lewicki and Olshausen, 1999; Einhauser et al 
2002; Wiskott & Sejnowski 2002; Spratling 2005)

• Task-specific circuits     (from IT 
to PFC)
- Supervised learning: ~ Gaussian 

RBF

Learning: supervised and unsupervised



S2 units

• Features of moderate complexity (n~1,000 
types)

• Combination of  V1-like complex units at 
different orientations

• Synaptic weights w 
learned from natural 
images

• 5-10 subunits chosen 
at random from all 
possible afferents 
(~100-1,000)

stronger 
facilitation

stronger 
suppression



Nature Neuroscience - 10, 1313 - 1321 (2007) / Published online: 16 September 2007 | doi:10.1038/nn1975

Neurons in monkey visual area V2 encode combinations of orientations
Akiyuki Anzai, Xinmiao Peng & David C Van Essen



C2 units

• Same selectivity as S2 units but 
increased tolerance to position and 
size of preferred stimulus

• Local pooling over S2 units with 
same selectivity but slightly 
different positions and scales

• A prediction to be tested:   S2 units 
in V2 and C2 units in V4?



Beyond C2 units

• Units increasingly complex and invariant
• S3/C3 units:

• Combination of  V4-like units with different 
selectivities

• Dictionary of ~1,000 features = num. columns in IT 
(Fujita 1992)



A loose hierarchy

• Bypass routes along with main routes: 
• From V2 to TEO (bypassing V4) (Morel & Bullier 1990; Baizer et al 1991; Distler et al 1991; 

Weller & Steele 1992; Nakamura et al 1993; Buffalo et al 2005)

• From V4 to TE (bypassing TEO) (Desimone et al 1980; Saleem et al 1992)

• “Replication” of simpler selectivities from lower 
to higher areas

• Rich dictionary of features – across areas -- 
with various levels of selectivity and invariance



Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu Knoblich 
Kreiman & Poggio 2005; Serre Oliva Poggio 2007

*Modified from (Gross, 1998)

A hierarchical algorithm…

[software available online]



• Radial basis function (RBF) networks [w| Gaussian 
kernel] can:
– learn effectively from “small” training sets
– generalize input-output mapping to new set of data (Poggio, 1990; 

Poggio and Bizzi, 2004)

• An advantage of the networks with the Gaussian-like 
tuning units [as opposed to a perceptron-like network 
with the sigmoidal neural units only] is the speed and 
ease of learning the parameters in the network (Moody and 
Darken, 1989; Poggio and Girosi, 1989)



• V1:
• Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)
• MAX operation in subset of complex cells (Lampl et al 2004)

• V4:
• Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)
• MAX operation (Gawne et al 2002)
• Two-spot interaction (Freiwald et al 2005)
• Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu et al., 2007)
• Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

• IT:
• Tuning and invariance properties (Logothetis et al 1995)
• Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)
• Read out data (Hung Kreiman Poggio & DiCarlo 2005)
• Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

• Human:
• Rapid categorization (Serre Oliva Poggio 2007)
• Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

(Serre Kouh Cadieu Knoblich Kreiman & Poggio 2005)

Next: can we falsify feedforward models? 
comparison w| neural data



Next class and 

Hubel & Wiesel 
movie
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