
Online Learning
9.520 Class, 19 March 2007

Sanmay Das (using some slides from Andrea Caponnetto)

About this class

Goal To introduce the general setting of online learning.

To discuss convergence results of the classical Perceptron algo-

rithm.

To discuss online gradient descent.

To introduce the “experts” framework and prove mistake bounds

in that framework.

To show the relationship between online learning and the theory

of learning in games.

What is online learning?

Sample data are arranged in a sequence.

Each time we get a new input, the algorithm tries to predict the

corresponding output.

As the number of seen samples increases, hopefully the predictions

improve.

Assets

1. does not require storing all data samples

2. more plausible model for sequential problems, especially those

that involve decision-making

3. typically fast algorithms

4. it is possible to give formal guarantees not assuming probabilis-

tic hypotheses (mistake bounds)

Problems

• Performance can be worse than best batch algorithms

• Generalization bounds always require some assumption on the

generation of sample data

Online setting

Sequence of sample data z1, z2, . . . , zn.

Each sample is an input-output couple zi = (xi, yi).

xi ∈ X ⊂ IRd, yi ∈ Y ⊂ IR.

In the classification case Y = {+1,−1}, in the regression case Y =

[−M, M].

Loss function V : IR × Y → IR+ (e.g. E(w, y) = Θ(−yw) and

V (w, y) = |1− yw|+).

Estimators fi : X → Y constructed using the first i data samples.

Online setting (cont.)

• initialization f0

• for i = 1,2, . . . , n

• receive xi

• predict fi−1(xi)

• receive yi

• update (fi−1, zi) → fi

Note: storing efficiently fi−1 may require much less memory than

storing all previous samples z1, z2, . . . , zi−1.

Goals

Batch learning: reducing expected loss

I[fn] = IEzV (fn(x), y)

Online learning: reducing cumulative loss

n∑
i=1

V (fi−1(xi), yi)

The Perceptron Algorithm

We consider the classification problem: Y = {−1,+1}.

We deal with linear estimators fi(x) = ωi · x, with ωi ∈ IRd.

The 0-1 loss E(fi(x), y) = Θ(−y(ωi · x)) is the natural choice in
the classification context. We will also consider the more tractable
hinge-loss

V (fi(x), y) = |1− y(ωi · x)|+.

Initialize weight vector to 0.

Update rule:

If Ei = E(fi−1(xi), yi) = 0 then ωi = ωi−1, otherwise

ωi = ωi−1 + yixi

The Perceptron Algorithm (cont.)

Passive-Aggressive strategy of the update rule.

If fi−1 classifies correctly xi, don’t move.

If fi−1 classifies incorrectly, try to increase the margin yi(ω ·xi). In

fact,

yi(ωi · xi) = yi(ωi−1 · xi) + y2
i ‖xi‖2 > yi(ωi−1 · xi)

Perceptron Convergence Theorem ∗

Theorem: If the samples z1, . . . , zn are linearly separable, then pre-

senting them cyclically to the Perceptron algorithm, the sequence

of weight vectors ωi will eventually converge.

We will prove a more general result encompassing both the separa-

ble and the inseparable cases

∗Pattern Classification. Duda, Hart, Stork, 01

Mistake Bound ∗

Theorem: Assume ‖xi‖ ≤ R for every i = 1,2, . . . , n. Then for

every u ∈ IRd

M≤

R‖u‖+

√√√√ n∑
i=1

V̂ 2
i

2

,

where V̂i = V (u · xi, yi) and M is the total number of mistakes:

M =
∑n

i=1 Ei =
∑n

i=1 E(fi−1(xi), yi).

∗Online Passive-Aggressive Algorithms. Crammer et al, 03

Mistake Bound (cont.)

• the boundedness conditions ‖xi‖ ≤ R is necessary.

• in the separable case, there exists u∗ inducing margins yi(u
∗·xi) ≥

1, and therefore null “batch” loss over sample points. The

Mistake Bound becomes

M≤ R2‖u∗‖2.

• in the inseparable case, we can let u be the best possible linear

separator. The bound compares the online performance with

the best batch performance over a given class of competitors.

Proof

The terms ωi · u increase as i increases

1. If Ei = 0 then ωi · u = ωi−1 · u

2. If Ei = 1, since V̂i = |1− yi(xi · u)|+,

ωi · u = ωi−1 · u + yi(xi · u) ≥ ωi−1 · u + 1− V̂i.

3. Hence, in both cases ωi · u ≥ ωi−1 · u + (1− V̂i)Ei

4. Summing up, ωn · u ≥M−
∑n

i=1 V̂iEi.

Proof (cont.)

The terms ‖ωi‖ do not increase too quickly

1. If Ei = 0 then ‖ωi‖2 = ‖ωi−1‖2

2. If Ei = 1, since yi(ωi−1 · xi) ≤ 0,

‖ωi‖2 = (ωi−1 + yixi) · (ωi−1 + yixi)

= ‖ωi−1‖2 + ‖xi‖2 + 2yi(ωi−1 · xi) ≤ ‖ωi−1‖2 + R2.

3. Summing up, ‖ωn‖2 ≤MR2.

Proof (cont.)

Using the estimates for ωn ·u and ‖ωn‖2, and applying Cauchy-

Schwartz inequality

1. By C-S, ωn · u ≤ ‖ωn‖‖u‖, hence

M−
n∑

i=1

V̂iEi ≤ ωn · u ≤ ‖ωn‖‖u‖ ≤
√
MR‖u‖

2. Finally, by C-S,
∑n

i=1 V̂iEi ≤
√∑n

i=1 V̂ 2
i

√∑n
i=1 E

2
i , hence

√
M−

√√√√ n∑
i=1

V̂ 2
i ≤ R‖u‖.

Online Gradient Descent

In classical gradient descent algorithms, at each time take a step in

the direction of steepest gradient:

∆w(τ) = −η∇E|
w(τ)

Can grow complicated, depending on various things.

Typically, use a quadratic approximation to the error function in the

neighborhood of the weight vector (matrix) that actually minimizes

the error function.

In online variants,

∆w(τ) = −η∇En|
w(τ)

where n is one training example, sampled sequentially, or chosen at

random.

Online Gradient Descent (contd.)

An example (Werfel, Xie, and Seung, 2004).

E =
1

2
|y − wx|2

Suppose y is generated by a teacher network with weights w∗. Let

W = (w − w∗)x. Then ∇E = ∇(1
2|Wx|2) = WxxT

Therefore, ∆w = −ηWxxT

Discussion

• Choice of learning rate effects convergence. Choosing

η(τ) ∝ 1/τ can guarantee convergence, but be very slow to

converge. Stationary η is often the choice in practice, and is

particularly useful in dealing with nonstationarity issues.

• Online gradient descent is efficient, esp. with redundant infor-

mation in the training set.

• Stochastic nature implies it can get out of local minima.

• May overshoot minima.

• (Bishop, 1995) has lots of information, derivations, ...

The Experts Framework

We will focus on the classification case.

Suppose we have a pool of prediction strategies, called experts.

Denote by E = {E1, . . . , En}.

Each expert predicts yi based on xi.

We want to combine these experts to produce a single master al-

gorithm for classification and prove bounds on how much worse it

is than the best expert.

The Halving Algorithm∗

Suppose all the experts are functions (their predictions for a point

in the space do not change over time) and at least one of them is

consistent with the data.

At each step, predict what the majority of experts that have not

made a mistake so far would predict.

Note that all inconsistent experts get thrown away!

Maximum of log2(|E|) errors.

But what if there is no consistent function in the pool? (Noise in

the data, limited pool, etc.)

∗Barzdin and Freivald, On the prediction of general recursive functions, 1972,
Littlestone and Warmuth, The Weighted Majority Algorithm, 1994

The Weighted Majority Algorithm∗

Associate a weight wi with every expert. Initialize all weights to 1.

At example t:

q−1 =
|E|∑
i=1

wiI[Ei predicted yt = −1]

q1 =
|E|∑
i=1

wiI[Ei predicted yt = 1]

Predict yt = 1 if q1 > q−1, else predict yt = −1

If the prediction is wrong, multiply the weights of each expert that
made a wrong prediction by 0 ≤ β < 1.

Note that for β = 0 we get the halving algorithm.
∗Littlestone and Warmuth, 1994

Mistake Bound for WM

For some example t let Wt =
∑|E|

i=1 wi = q−1 + q1

Then when a mistake occurs Wt+1 ≤ uWt where u < 1

Therefore W0um ≥ Wn

Or m ≤ log(W0/Wn)
log(1/u)

Then m ≤ log(W0/Wn)
log(2/(1+β)) (setting u = 1+β

2)

Mistake Bound for WM (contd.)

Why? Because when a mistake is made, the ratio of total weight
after the trial to total weight before the trial is at most (1 + β)/2.

W.L.o.G. assume WM predicted −1 and the true outcome was +1.
Then new weight after trial is:

βq−1 + q1 ≤ βq−1 + q1 + 1−β
2 (q−1 − q1) = 1+β

2 (q−1 + q1).

The main theorem (Littlestone & Warmuth):
Assume mi is the number of mistakes made by the ith expert on a
sequence of n instances and that |E| = k. Then the WM algorithm
makes at most the following number of mistakes:

log(k) + mi log(1/β)

log(2/(1 + β))

Big fact: Ignoring leading constants, the number of errors of the
pooled predictor is bounded by the sum of the number of errors of
the best expert in the pool and the log of the number of experts!

Finishing the Proof

W0 = k and Wn ≥ βmi

log(W0/Wn) = log(W0)− log(Wn)

log(Wn) > mi logβ, so − log(Wn) < mi log(1/β)

Therefore log(W0)− log(Wn) < log k + mi log(1/β)

A Whirlwind Tour of Game Theory

Players choose actions, receive rewards based on their own actions

and those of the other players.

A strategy is a specification for how to play the game for a player.

A pure strategy defines, for every possible choice a player could

make, which action the player picks. A mixed strategy is a prob-

ability distribution over strategies.

A Nash equilibrium is a profile of strategies for all players such

that each player’s strategy is an optimal response to the other

players’ strategies. Formally, a mixed-strategy profile σi
∗ is a Nash

equilibrium if for all players i:

ui(σi
∗, σ

−i
∗) ≥ ui(si, σ−i

∗)∀si ∈ Si

Some Games: Prisoners’ Dilemma

Cooperate Defect
Cooperate +3,+3 0,+5

Defect +5,0 +1,+1

Nash equilibrium: Both players defect!

Some Games: Matching Pennies

H T
H +1,−1 −1,+1
T −1,+1 +1,−1

Nash equilibrium: Both players randomize half and half between

actions.

Learning in Games∗

Suppose I don’t know what payoffs my opponent will receive.

I can try to learn her actions when we play repeatedly (consider

2-player games for simplicity).

Fictitious play in two player games. Assumes stationarity of oppo-

nent’s strategy, and that players do not attempt to influence each

others’ future play. Learn weight functions

κi
t(s

−i) = κi
t−1(s

−i) +

{
1 if s−i

t−1 = s−i

0 otherwise

∗Fudenberg & Levine, The Theory of Learning in Games, 1998

Calculate probabilities of the other player playing various moves as:

γi
t(s

−i) =
κi

t(s
−i)∑

s̃−i∈S−i κi
t(s̃

−i)

Then choose the best response action.

Fictitious Play (contd.)

If fictitious play converges, it converges to a Nash equilibrium.

If the two players ever play a (strict) NE at time t, they will play it
thereafter. (Proofs omitted)

If empirical marginal distributions converge, they converge to NE.
But this doesn’t mean that play is similar!

t Player1 Action Player2 Action κ1
T κ2

T
1 T T (1.5,3) (2,2.5)
2 T H (2.5,3) (2,3.5)
3 T H (3.5,3) (2,4.5)
4 H H (4.5,3) (3,4.5)
5 H H (5.5,3) (4,4.5)
6 H H (6.5,3) (5,4.5)
7 H T (6.5,4) (6,4.5)

Cycling of actions in fictitious play in the matching pennies
game

Universal Consistency

Persistent miscoordination: Players start with weights of (1,
√

2)

A B
A 0,0 1,1
B 1,1 0,0

A rule ρi is said to be ε-universally consistent if for any ρ−i

lim
T→∞

supmax
σi

ui(σi, γi
t)−

1

T

∑
t

ui(ρi
t(ht−1)) ≤ ε

almost surely under the distribution generated by (ρi, ρ−i), where

ht−1 is the history up to time t−1, available for the decision-making

algorithm at time t.

Back to Experts

Bayesian learning cannot give good payoff guarantees.

• Suppose the true way your opponent’s actions are being gener-
ated is not in the support of the prior – want protection from
unanticipated play, which can be endogenously determined.

• The Bayesian optimal method guarantees a measure of learning
something close to the true model, but provides no guarantees
on received utility.

• Can use the notion of experts to bound regret!

Define universal expertise analogously to universal consistency, and
bound regret (lost utility) with respect to the best expert, which is
a strategy.

The best response function is derived by solving the optimization

problem

max
Ii

Ii~ui
t + λvi(Ii)

~ui
t is the vector of average payoffs player i would receive by using

each of the experts

Ii is a probability distribution over experts

λ is a small positive number.

Under technical conditions on v, satisfied by the entropy:

−
∑
s

σ(s) logσ(s)

we retrieve the exponential weighting scheme, and for every ε there

is a λ such that our procedure is ε-universally expert.

