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Overview
• By abusing the standard Tikhonov regularization 

functional, we can derive most “kernel methods”
and many new novel techniques.

• KPCA
• Semi-supervised Classification and Clustering 
• Transforming Time Series with Few Examples
• Other applications (not today, sorry)

– Kernel Learning
– Robust SVMs and Learning with missing data
– Constraints and Conservation Laws



• Unlabeled:

• How to leverage the unlabelled data?

Priors and “Semi-Supervision”

y

x



Video



• Big mess of numbers for each frame

• Raw pixels, no image processing

Representation



Representation

• We want to extract position of limbs

Left Hand
Left Elbow
Right Hand
Right Elbow



Annotations from user or detection algorithms



Assume that output time series is smooth.



Approach
• Look for smooth 

mapping from images to 
positions

• Annotate a subset of the 
frames

• Assume output obeys 
physical laws

• Video



• Let H be an RKHS, and consider the Tikhonov
Regularization functional

• Solution:

Nonlinear Regression



• Suppose we add a penalty term constraining the 
outputs and kernel

• Solution:

Augmented Nonlinear Regression

Search over f and y Additional costs/constraints 
on y



A variety of learning algorithms

Manifolds from 
Video

Output obeys linear 
dynamical relations

Manifold Learning/ 
KPCA

Local geometry of 
the outputs

Clustering/
Transduction

Outputs are binary

Regression/
Classification

None

AlgorithmConstraints



Least-Squares Cost

• We can eliminate the function for practical 
purposes, recovering it from the computed yi.

• By representer theorem, we may rewrite this



Least-Squares Cost

• Solving for c gives 

• Plugging in this solution gives

• Here y is the vector of all of the yi



Multiple dimensions

• Suppose we want a vector valued function 
f:RD→Rd.

• We penalize each component individually

• We may solve for f to find the minimum cost is 
given by



Multiple dimensions

• Let 
• This is a d x L matrix.
• Then our optimal cost can be written succinctly as



Kernel PCA
• Let f:RD → Rd with D>d.  Assume that the set of 

outputs is white and zero mean: 

• Can be solved as an eigenvalue problem. (Shoelkopf
et al, ’98)



Kernel Principal Components

• Solutions are the eigenvalues of K projected onto 
the zero-mean subspace of the RKHS.

• Since c = (K+λ I)-1 y, the resulting coefficients are 
also eigenvalues of K when the lifted data is zero-
mean.

• Centering the data in feature space is often useful in 
unsupervised learning.

• Regularization parameter only controls the scale of 
each component.



Centered Kernels

• Constraining the Y to have zero column sum results 
in a hard eigenvalue problem.

• If we instead insist that ∑i f(xi) = 0, we get the 
ordinary eigenvalue problem

where
• The components are now just the eigenvalues of
• You don’t have to invert anything.



Clustering and Segmentation



Classification on RKHS

y

x

• Tikhonov
Regularization

• Labels set to 1 or -1
• Just choose a loss



Classsification

• Example costs:



Transduction

y

x

• Sparsely labeled data



Taxonomy

• Classification: function fitting with ±1 labels
• Transduction: function fitting with ±1 labels, 

some of the labels withheld
• Segmentation/Clustering: function fitting with 
±1 labels, all of the labels withheld

• Conceptually related/algorithmically related



Alternative Approaches

• Density Estimation
– Local minima, not well conditioned for large dimension

• Local Search for Binary Labels
– Can’t guarantee performance

• Graph Cuts
– Is a special case of what follows…



• Start with zero-meaned Tikhonov Regularization
• Force labels to be 1 or -1
• NP-Hard

Transduction and Segmentation



Approximation 1: Eigenvalue
• Pick αi ≥ 0.
• Solve as Generalized 

Eigenvalue Problem
• Surprisingly good in practice, 

reasonably efficient
• Of course, how you pick the 

α is ad hoc
• Best α can be computed by 

semidefinite programming

Sum constraints



Approximation 2: Duality
• Dual is a semidefinite

program
• Randomized Algorithm of 

Goemans and Williamson 
gives you clusters.

• Compare against dual 
program for bounds

• Algorithms can be slow for 
large N

Dual

Dual



Spectral Clustering
• Freeman and Perona - Eigenvectors of adjacency matrix K.
• Shi and Malik – Graph Partitioning/Normalized Cuts.
• Other variants…
• All are approximations of binary label prior!



Normalized Cuts

• Pick αi = 

• Solution is second largest eigenvector of
• where 



Spectral Clustering sensitivity

• Weightings cause particular sensitivities



Solution 2: Average Gap

• Pick αi = 1/N.
• Perona-Freeman with modified kernel
• Just an Eigenvalue Problem – first KPCA 

component



Average Gap Algorithm

• solve

• No degree weighting



Leveraging Dynamics



Dynamics

st st+1 st+2

yt yt+1 yt+2

A A

C C C

xt xt+1 xt+2

f f f



Dynamics

Assume data is 
generated by an 
LTIG system

For the experiments, 
this model can be 
very dumb!



Dynamics

• Search over functions and missing data

• Assume a priori
– We know (A,C)
– f ∈ RKHS is vector valued
– Some of the yt are given

st st+1 st+2

yt yt+1 yt+2

A A

C C C

xt xt+1 xt+2

f f f



Dynamics

• Search over functions and missing data

st st+1 st+2

yt yt+1 yt+2

A A

C C C

xt xt+1 xt+2

f f f



Optimization Problem

Fidelity to training data

Smoothness

Dynamics

• Prefers outputs that evolve smoothly



Optimization Problem

Tikhonov
Regularization

• Prefers outputs that evolve smoothly



Optimization Problem

RTS
Smoother 
(non-causal
Kalman Filter)

• Prefers outputs that evolve smoothly



Optimization Problem

Fidelity to training data

Smoothness

Dynamics

• Semi-supervised Algorithm



Optimization Problem

• Eliminating the state sequence by differentiation 
yields the following problem that may be solved by 
least squares

• Ω is a Toeplitz matrix that can be computed 
efficiently from the linear dynamics model.



Synthetic Results
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Recovered mappings:



Video



• Big mess of numbers for each frame

• Raw pixels, no image processing

Representation



Representation

• We want to extract position of limbs

Left Hand
Left Elbow
Right Hand
Right Elbow



Annotations from user or detection algorithms



Assume that output time series is smooth.



Approach
• Look for smooth 

mapping from images to 
positions

• Annotate a subset of the 
frames

• Assume output obeys 
physical laws

• Video
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