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Overview

By abusing the standard Tikhonov regularization
functional, we can derive most “kernel methods”
and many new novel techniques.

KPCA
Semi-supervised Classification and Clustering
Transforming Time Series with Few Examples

Other applications (not today, sorry)

— Kernel Learning

— Robust SVMs and Learning with missing data
— Constraints and Conservation Laws



Priors and “Semi-Supervision”

e Unlabeled: @ o eco @ ® 00 000 B

y“

* How to leverage the unlabelled data? X



Video



Representation

« Big mess of numbers for each frame

e Raw pixels, no image processing
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Representation

e We want to extract position of limbs

Left Hand
Left Elbow
Right Hand
Right Elbow




Annotations from user or detection algorithms



Y-S -y KN b

Assume that output time series is smooth.



Approach

 Look for smooth
mapping from images to
positions

it . Annotate a subset of the
frames

 Assume output obeys
physical laws




Nonlinear Regression

o Let A be an RKHS, and consider the Tikhonov
Regularization functional

Z V(F(xi),5:) + Al I

L

e Solution: f(x)= > cik(x;,x%)
i=1



Augmented Nonlinear Regression

e Suppose we add a penalty term constraining the
outputs and kernel

L
min 3 V(£ (@) v:) + A% +S@)

Iy i—=1 /
Search over f andy Additiohal costs/constraints
ony

L

e Solution: f(x) =) cik(x;,x)
i=1



A variety of learning algorithms

Constraints Algorithm

None Regression/
Classification

Outputs are binary | Clustering/
Transduction

Local geometry of | Manifold Learning/
the outputs KPCA

Output obeys linear | Manifolds from
dynamical relations | Video




east-Squares Cost

« We can eliminate the function for practical
purposes, recovering it from the computed y;.

L
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By representer theorem, we may rewrite this

min ||Kc — v||2 + A’Kc
fEHII yl[© =+



east-Squares Cost

min | Kc — y||* + Ac'Kc
fer

e Solving for ¢ gives ¢ = (K + AI)"ly
e Plugging in this solution gives \y'(K + AI) 1y

* Herey is the vector of all of the y;,



Multiple dimensions

« Suppose we want a vector valued function
f:RP— R,

* We penalize each component individually

d L
?éi?r%jzl z:l(fj(xi) —yii)? + M fill%

* \We may solve for f to find the minimum cost Is
given by d

A YK+ M)y,

1=1



Multiple dimensions

-LetY:[yﬂ]’ 7=1,...,d 1=1,...,L
e Thisisad x L matrix.
e Then our optimal cost can be written succinctly as

ATr(Y(K + M)~ hY')



Kernel PCA

e Letf:RP — Rdwith D>d. Assume that the set of
outputs Is white and zero mean:

min Tr(Y (K + M)~ YY)

st.YY' =14
Y1y =0g4

e Can be solved as an eigenvalue problem. (Shoelkopf
et al, '98)



Kernel Principal Components

Solutions are the eigenvalues of K projected onto
the zero-mean subspace of the RKHS.

Since ¢ = (K+A 1)1y, the resulting coefficients are
also eigenvalues of K when the lifted data Is zero-
mean.

Centering the data in feature space Is often useful in
unsupervised learning.

Regularization parameter only controls the scale of
each component.



Centered Kernels

e Constraining the Y to have zero column sum results
In a hard eigenvalue problem.
* If we instead insist that 2 f(x;) = 0, we get the
ordinary eigenvalue problem
min Tr(Y (K 4+ M) "1Y)
st.YY' =1,
where K = (I — 151%)K(I — 151%)
« The components are now just the eigenvalues of K

* You don’t have to invert anything.



Clustering and Segmentation



Classification on RKHS

N
min > V&), ) + M flI%
Ly i3

e Tikhonov
Regularization

e Labelssetto1 or-1
e Just choose a loss




Classsification

e Example costs:

V(f(x;),vy;) Classifier
(yi — F(x:))? RBF
max(0,1 — f(x;)y;) SVM
log Bin(y;|logit(f(x;))) | GPR




Transduction

» Sparsely labeled data




Taxonomy

Classification: function fitting with -

-1 labels

Transduction: function fitting with 4
some of the labels withheld

Segmentation/Clustering: function
+1 labels, all of the labels withheld

-1 labels,

fitting with

Conceptually related/algorithmically related



Alternative Approaches

e Density Estimation
— Local minima, not well conditioned for large dimension

 Local Search for Binary Labels
— Can’t guarantee performance

o Graph Cuts
— Is a special case of what follows...



Transduction and Segmentation

min v (K 4+ )~y

S.T. yz2 =1

o Start with zero-meaned Tikhonov Regularization
* Force labels to be 1 or -1
 NP-Hard



Approximation 1. Eigenvalue

miny y' (K+ M)~ 1y e Pick a; > 0.
st. y2=1 « Solve as Generalized
@Sum constraints Eigenvalue Problem
| o » e Surprisingly good in practice,
min y (K+AD™y reasonably efficient
N . N o Of course, how you pick the
s.t. 21 oY, = 21 o7 o 1S ad hoc
1= 1=

e Best o can be computed by
semidefinite programming



Approximation 2: Duality

miny y' (K+ M)~ 1y
S.T. yz2

=1
@Dual
N
max > oy
i=1
s.t. (K4 D 1-

diag(a) = O
@Dual
miny Tr((K+ AI)~1Y)

s.t. diag(Y) =1
Y >0

Dual is a semidefinite
program
Randomized Algorithm of

Goemans and Williamson
gives you clusters.

Compare against dual
program for bounds

Algorithms can be slow for
large N



Spectral Clustering

Freeman and Perona - Eigenvectors of adjacency matrix K.
Shi and Malik — Graph Partitioning/Normalized Cuts.
Other variants...

All are approximations of binary label prior!

L1

L2

L3



Normalized Cuts

miny y' (K+ )~y
s.t.  y!'diag(a)y =N | o

1
A+ Ky

e Pick a; =

* Solution is second largest eigenvector of D—1/2KP—1/2
e where D = diag(K1)



Spectral Clustering sensitivity

miny yT(AIA{ 2Dy

S.t. yTD_ly = 27];\[:1 QU

« Weightings cause particular sensitivities
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Solution 2: Average Gap

miny y' (K+ A~ ly
S.t. yTy = N

* Pick o, = 1/N.
e Perona-Freeman with modified kernel

 Just an Eigenvalue Problem — first KPCA
component



Average Gap Algorithm

e 3s0lve

miny vy (K + 2D 1y
S.tT. yTy = N

* No degree weighting




Leveraging Dynamics



Dynamics




Dynamics

st + 1] = As[t] 4 wlt] |
x[t] = Cs[t] + v[t] Assume data IS
generated by an
Elwlflwlt]] = Au LTIG system
E[v[t]v[t]T = Ay

C=[100 } For the experiments,
1 6§ 0 this model can be
A=]01 6 very dumb!
00 1




Dynamics

 Search over functions and missing data

o A A
e ASSUmMe a priori s, S, S,
— We know (A,C) C C C
— f € RKHS is vector valued <> ( (
yt yt+1 yt+2

— Some of the y, are given




Dynamics

 Search over functions and missing data

A A
1 5 O St St+ St+

S [c e Jc
GD Q+1 Yie2

C=[100] lf | |+

T
f(x) = ) bik(xs,x)
t=1



Optimization Problem

 Prefers outputs that evolve smoothly
min Tr(Y (K 4+ M\ JIp) YY)  Smoothness
Y {st}i=1.T

T
+ Mg Y llye— Csell? |
t=1 Dynamics

T
+ gD st — ASt—lH%\w
=0

subject to  y;, =y Fidelity to training data



Optimization Problem

 Prefers outputs that evolve smoothly

min Tr(Y (K + M I7) 1Y’
Y. {st}t=1.T (Y ( klT) )
4%2— Tikhonov
=l Regularization
T
d t — ASt—11IA,
t=2

subject to  y;=uy



Optimization Problem

 Prefers outputs that evolve smoothly

min T (K> )= 1)

Y {st}i=1.T
t . RTS
+ Mg D llye — Csell? Smoother
t=1
(non-causal

T
2
+ A Z ||St_ASt—1H/\w
=2

subject to  yy = wy

Kalman Filter)



Optimization Problem

e Semi-supervised Algorithm
min Tr(Y (K 4+ M\ JIp) YY)  Smoothness
Y {stt=1.T

T
+ Mg Y llye— Csell? |
t=1 Dynamics

T
+ gD st — ASt—lH%\w
=0

subject to  y;, =y Fidelity to training data



Optimization Problem

« Eliminating the state sequence by differentiation
yields the following problem that may be solved by
least squares

mir Tr(Y(K + A\ I0) 1Y) + 2, Tr(YQYY)
subject to  yy,=uy

o Q) isa Toeplitz matrix that can be computed
efficiently from the linear dynamics model.



Synthetic Results
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Video



Representation

« Big mess of numbers for each frame

e Raw pixels, no image processing
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Representation

e We want to extract position of limbs

Left Hand
Left Elbow
Right Hand
Right Elbow




Annotations from user or detection algorithms



Y-S -y KN b

Assume that output time series is smooth.



Approach

 Look for smooth
mapping from images to
positions

it . Annotate a subset of the
frames

 Assume output obeys
physical laws
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