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. Two Big Problems in Machine Learning

@ 1. The “Deep Learning Problem”
» “Deep” architectures are necessary to solve the invariance problem
in vision (and perception in general)
& 2. The ‘“‘Partition Function Problem”

» Give high probability (or low energy) to good answers
» Give low probability (or high energy) to bad answers
» There are too many bad answers!

@ This talk discusses problem #2 first and #1 second.

» The partition function problem arises with probabilistic approaches
» Non-probabilistic approaches may allow us to get around it.

@ Energy-Based Learning provides a framework in which to describe

probabilistic and non-probabilistic approaches to learning

@ Paper: LeCun et al. : “A tutorial on energy-based learning”

» http://yann.lecun.com/exdb/publis
» http://www.cs.nyu.edu/~yann/research/ebm
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; Plan of the Talks

&@ Introduction to Energy-Based Models

» Energy-Based inference
» Examples of architectures and applications, structured outputs

@ Training Energy-Based Models

» Designing a loss function. Examples of loss functions.
» Getting around the partition function problem with EB learning

& Architectures for structured outputs and sequence labeling

» Energy-Based Graphical Models (non-probabilistic factor graphs)
» Latent variable models

» Conditional Random Fields, Maximum Margin Markov Nets, Graph
Transformer Networks

& Applications in vision
» Hierarchical models of vision and object recognition
» Unsupervised learning of invariant feature hierarchies.
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KEnergy-Based Model for Decision-Making
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\”Complex Tasks: Inference is non-trivial

=SS . =
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What Questions Can a Model Answer?

@ 1. Classification & Decision Making:

» “which value of Y is most compatible with X?”
» Applications: Robot navigation,.....
» Training: give the lowest energy to the correct answer

& 2. Ranking:

» "Is Y1 or Y2 more compatible with X?”
» Applications: Data-mining....
» Training: produce energies that rank the answers correctly

& 3, Detection:

» “Is this value of Y compatible with X"?
» Application: face detection....
» Training: energies that increase as the image looks less like a face.

@ 4. Conditional Density Estimation:

» “*What is the conditional distribution P(Y|X)?”
» Application: feeding a decision-making system
» Training: differences of energies must be just so.

Yann LeCun t New York University




; Decision-M ling

& Energies are uncalibrated

» The energies of two separately-trained systems cannot be combined
» The energies are uncalibrated (measured in arbitrary units)

& How do we calibrate energies?
» We turn them into probabilities (positive numbers that sum to 1).

» Simplest way: Gibbs distribution
» Other ways can be reduced to Gibbs by a suitable redefinition of the

energy.
6_ 6 E (Y:X )
P(Y|X) =
( ‘ ) f € _/6 E (y :X ) j
P
Partition function Inverse temperature
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. Architecture and Loss Function

@ Family of energy functions E — { E(W’ Y, X) - W c W}
@ Trainingset S = {(Xi’,Yi’) 1 =1...P}

@ Loss functional / Loss function L(FE,S ) LW,S )
» Measures the quality of an energy function
@ Training W$ — min ﬁ(m S)

Wwew
& Form of the loss functional

» invariant under permutations and repetitions of the samples

P
1 . .
£(Ea3) — F L(Y%aE(Wa«ya X%))_I_R(W)
izl/ \ ™ N
Energy surface Regularizer
Per-sample Desired ¢ . given Xi
loss answer

as Y varies
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Designing a L.oss Functional
[ —

Human T |—F Human T ]
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@ Correct answer has the lowest energy -> LOW LOSS

@ Lowest energy is not for the correct answer -> HIGH LOSS
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Designing a L.oss Functional
[ —
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& Push down on the energy of the correct answer

& Pull up on the energies of the incorrect answers, particularly if they

are smaller than the correct one
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rchitecture + Inference Algo + Loss Function =

B

E(W,Y.X) & 1. Design an architecture: a particular form for E(W,Y,X).
* ¥ 2. Pick an inference algorithm for Y: MAP or conditional
distribution, belief prop, min cut, variational methods,
W gradient descent, MCMC, HMC.....

¥ 3. Pick a loss function: in such a way that minimizing it

with respect to W over a training set will make the inference
algorithm find the correct Y for a given X.

X —
~ —>

&P 4. Pick an optimization method.

& PROBLEM: What loss functions will make the machine approach

the desired behavior?
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Several Energy Surfaces can give the same answers
h—-———.._._.__A - ——

E—————— |

& Both surfaces compute Y=X"2
@ MINy E(Y,X) = X2

& Minimum-energy inference gives us the same answer
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E(W,X,Y) = [|Giy, (X) = Gay, (V)] B(W.Y. X)

@ The Implicit Regression architecture
» allows multiple answers to have low [||G1W1 (X) — Ga,, (y)||1]
energy.

» Encodes a constraint between X and T T
Y rather than an explicit functional ( 1
relationship Gy, (X) Gay, (V)

» This is useful for many applications

» Example: sentence completion: “The 4 4
cat ate the | |
{mouse,bird,homework,...}” D% v

» [Bengio et al. 2003]

» But, inference may be difficult.
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Examples of Loss Functions: Energy Loss
e ————

@ Energy Loss Lenergy(yiaE(ﬂ/ﬂ an%)) — E(I/Va Y%aXz)

» Simply pushes down on the energy of the correct answer

energy
E(W,Y,X)

\\o.
‘i%.
oi [| Net(X) - Net(Y) ||Ll
ergy f *
E(W,Y,X)
Neural Net Neural Net
1-6-6 1-6-6
|| Net(X) - Y ||L1 param Wx param Wy
A A

a A \ \

e (Comx Jomr )
B o
r &
D ED J
(a) 0\)
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Lyerceptron(Y', E(W, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Perceptron Loss [LeCun et al. 1998], [Collins 2002]

» Pushes down on the energy of the correct answer

» Pulls up on the energy of the machine's answer

» Always positive. Zero when answer is correct

» No “margin”: technically does not prevent the energy surface from
being almost flat.

» Works pretty well in practice, particularly if the energy
parameterization does not allow flat surfaces.
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| Perceptron Loss for Binary Classification
S IS

Lyerceptron(Y', EOW, ¥, X")) = E(W,Y", X*) — min E(W,Y, X").

@ Energy: EW)Y X)=-YGw(X),

& Inference: Y* = argminy,e{_lal} — YGw(X) = Sigl’l(GW (X))

P
1 ; i i i
& Loss: Lperceptron(W, S) = 5 Z (s1gn(GW (X)) —-Y ) Gw (X").
i=1
) : G (X
@ Learning Rule: W —W+n(Y" —sign(Gw(X")) gvg/ ) :
@ If Gw(X) is linearin W: E(W, Y, X) = —“YEHFJT (X))

W — W+ (Y —sign(WT®(X7))) ®(X7)
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i Examples of Loss Functions: Generalized Margin Losses
[ —

@ First, we need to define the Most Offending Incorrect Answer

& Most Offending Incorrect Answer: discrete case

Definition 1 Let Y be a discrete variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are incorrect:

V' = argminy ¢ yopay2yi E(W, Y, X*). (8)

@ Most Offending Incorrect Answer: continuous case
Definition 2 Let Y be a continuous variable. Then for a training sample (X', Y"), the

most offending incorrect answer Y is the answer that has the lowest energy among
all answers that are at least e away from the correct answer:

Y = argminy ¢y 1y _yi > E(W, Y, X*). (9)
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Examples of Loss Functmns Generallzed Margln Losses

Linargin(W, Y, X") = Qm (E(W, YY", X"), EOW,Y", X")) .

@ Generalized Margin Loss

» Qm increases with the
energy of the correct
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» Qm decreases with the
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’ Examples of Generalized Margin Losses

Lhinge(W,Y*, X") = max (0,m + E(W,Y*, X*) — E(W,Y", X")),

& Hinge Loss

» [Altun et al. 2003], [Taskar et al. 2003] 7 -

» With the linearly-parameterized binary
classifier architecture, we get linear SVM

Loss: L

—2 —1
| ==

E_ correct - E_incorrect
Liog(W, Y, X7) = log (1 4 #(VY XD=EWYT XD )

& Log Loss

» “soft hinge” loss

» With the linearly-parameterized binary
classifier architecture, we get linear
Logistic Regression

Loss: L

E correct - E_incorrect
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Examples of Margin Losses: Square-Square Loss
e ———— _—

Loq-sq(W, Y, X%) = EW,Y", X*)? + (max(0,m — E(W,Y", X")))"

@ Square-Square Loss S m—
» [LeCun-Huang 2005]

» Appropriate for positive energy
functions

energy
E(W,Y,X)

|| Net(X) - Net(Y) ||L1

Neural Net Neural Net
1-6-6 1-6-6

param Wx param Wy
A [
\ \

( input X X output Y )
(b)
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Other Margin-Like Losses

maﬁ&;» —

@ L.VQ2 Loss [Kohonen, Oja], [Driancourt-Bottou 1991] <- speech recognition

o EW,)Y!, X" — E(W,Y* X*
leqg(W,Yz,X")zmin(l,max((), URSPS URS ))),

SE(W, Y, X7)

@ Minimum Classification Error Loss [Juang, Chou, Lee 1997] <- speechr.
Linee(W,Y', X") =0 (E(W,Y", X") = E(W,Y", X")),
o(x) = (1+e %) !

& Square-Exponential Loss [Osadchy, Miller, LeCun 2004] <- face detection

qu—exp(m Y’&jX%) _ E(VV, Y?:, X%)Q _|_ VB_E(W’?Z.?XZ.)’
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’ egative Log-Likelihood Loss

m%-

& Conditional probability of the samples (assuming independence)

P

P!, YP X xPow) =] POy X W),
P P =1

—log | [ POV X", W) =) —log P(Y'| X', ).

i=1 i=1 |
e—ﬁE(W,Y:,Xz)

@ Gibbs distribution: ~ P(Y| X", W) = — X

fyey

P P
~log [ POV |X", W) = Y BEOV, Y, X) + log / e,
=1 =1 ye

@ We get the NLL loss by dividing by P and Beta:
P

Lan(W,S) = %Z (E(W, Y XT) + %log/

6—6E(W,y,xi)) .
i=1 yey

@ Reduces to the perceptron loss when Beta->infinity
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Negative Log-Likelihood Loss

M%ﬁﬁ‘m,;; =

& Pushes down on the energy of the correct answer

& Pulls up on the energies of all answers in proportion to their probability

P

1 o1 ;
Lan(W,8) = > (E(W, Vi XY + 5 log/ ) e PEWy, X )) .
Y

=1

YV|XE W
8W 8W ( | b )3

8Lnu(W, Y“',Xi) B 8E(W, Y%',X“') / aE(W, Y, Xi)P
Yey oW
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@ Binary Classifier Architecture:
P

Lon(W,8) = 5> [—Y@GW(X“) +log (&1Ew XD 4 YWD
1=1

'CHH(W S — Zlog (1 4 G_QY GW(X ))

?,_1

& Linear Binary Classifier Architecture

Lan(W, ) Z log (1 -+ =2 W20,

1_1

& Learning Rule in the linear case: logistic regression

& NLL is used by lots of speech recognition systems (they call it Maximum
Mutual Information), lots of handwriting recognition systems (e.g.
Bengio, LeCun 94] [LeCun et al. 98]), CRF [Lafferty et al 2001]

Yann LeCun * New York University
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Negative Log-Likelihood Loss

& Negative Log Likelihood Loss has been used for a long time in many

communities for discriminative learning with structured outputs

» Speech recognition: many papers going back to the early 90's
[Bengio 92], [Bourlard 94]. They call *"Maximum Mutual
Information”

» Handwriting recognition [Bengio LeCun 94], [LeCun et al. 98]
» Bio-informatics [Haussler]

» Conditional Random Fields [Lafferty et al. 2001 ]

» Lots more......

» In all the above cases, it was used with non-linearly
parameterized energies.

Yann LeCun * New York University



at Makes a “Good” [

o EC + M = EI ,» s
° \/\ A
(Loss Function R— ost  [HP,
— — 0.7 R e ‘
|-_|J__ 0.6} ,\/‘, .
@ Good loss functions make the § o5} e E_=FE, -
c i e
machine produce the correct < ™ I
0.3 P
answer ozl Lo HP,
» Avoid collapses and flat nt® g
energy su rfaces % 01 02 03 04 05 06 07 08 09 1
Energy: E.

Sufficient Condition on the Loss

Let (X% Y") be the i*" training example and m be a positive margin. Min-
imizing the loss function L will cause the machine to satisfy E(W,Y*, X*) <
EW,Y,X") —m for all Y # Y, if there exists at least one point (e, e3) with
e1 + m < e such that for all points (e, e5) with e} +m > €, we have

Qr,(e1,e2) < Qg,i(€], €s),

where Qg ) 1s given by
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‘ha Make a ‘“Good’’ Loss Function

M&b

& Good and bad loss functions

Loss (equation #) | Formula Margin
energy loss EW,Y!, X?) none
perceptron EW,Y", X") —minyecy E(W,Y, X") 0
hinge max (0,m + E(W,Y", X*) — E(W,Y", X")) m
log log (1 4+ BWY X)) —BE(W,Y",X") ~ 0
LVQ2 min (M, max(0, E(W,Y*, X*) — E(W,Y", X")) 0
MCE (14 e~ (EOWYXD=EORYTXD) ) - >0
square-square E(W,Y" X")? — (maX(O, m — E(W, Y?, Xi)))2 m
square-exp E(W,Y?, X")? 4 ge” BEWY5XY) | >0
NLL/MMI E(W, Y X7 f élog ey e-ﬁE(Wﬂ;X ) >0

Yann LeCun
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: Advantages/Disadvantages of various losses

& Loss functions differ in how they pick the point(s) whose energy is
pulled up, and how much they pull them up

@ Losses with a log partition function in the contrastive term pull up all

the bad answers simultaneously.

» This may be good if the gradient of the contrastive term can be
computed efficiently

» This may be bad if it cannot, in which case we might as well use
a loss with a single point in the contrastive term
@ Variational methods pull up many points, but not as many as with the

full log partition function.

& Efficiency of a loss/architecture: how many energies are pulled up for

a given amount of computation?
» The theory for this is does not exist. It needs to be developed

Yann LeCun t New York University



@ The energy includes “hidden” variables Z whose value is never
given to us

» We can minimize the energy over those latent variables
» We can also "marginalize” the energy over the latent

Minimization over latent variables:

E(Y, X) = min B(Z,Y, X).
€

Marginalization over latent variables:

1
E(X,Y)=—=log e PEEY.X)
/6 z€Z

X Y
Estimation this integral may require some approximations

(sampling, variational methods,....)

Yann LeCun
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& The energy includes “hidden” variables Z whose value is never given to us

E(Y,X)=min E(Z,Y, X).

A=A
* .
Y" = argminyy 7.z E(Z,Y, X).
BW. Y, X) E(W,Z,Y,X)

IRGLOREE R e .
( L’ ] * I
>3] ] '
L . |
| T |
‘ | . |
T | DUt el I
Gface (X) : * ' ' X ' : :
§ : | |
A | CraceX)| | Grace )| |Crace(X)|= = = = | Grace(X | |
| |
l ] 1
1 llI l I

face" (= 1) position "face" (= 1)

or of or
"no face" (=0) face "no face" (= 0)
Y Z Y
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. What can the latent variables represent?

@ Variables that would make the task easier if they were known:
» Face recognition: the gender of the person, the orientation of
the face.

» Object recognition: the pose parameters of the object
(location, orientation, scale), the lighting conditions.

» Parts of Speech Tagging: the segmentation of the sentence
into syntactic units, the parse tree.

» Speech Recognition: the segmentation of the sentence into
phonemes or phones.

» Handwriting Recognition: the segmentation of the line into
characters.

@ In general, we will search for the value of the latent variable that

allows us to get an answer (Y) of smallest energy.

Yann LeCun t New York University



Probabilistic Latent Variable Models

& Marginalizing over latent variables instead of minimizing.

e_ﬁE(Zn}/:X)
P(Z,Y|X) = [ ey sez € PE@=X)
o—BE(Z,Y,X)
P(Y|X) = J:ez

fyey zEZ G_ﬁE(y?Z:X) ‘

& Equivalent to traditional energy-based inference with a redefined

energyv function:

1
Y* — argminyey — E log/ 6_6E(23Y7X)‘
zEZ

@ Reduces to minimization when Beta->infinity

Yann LeCun * New York University



; Efficient In gy-Based Factor Graphs

M

& Graphical models have given us efficient inference algorithms, such as

belief propagation and its numerous variations.
@ Traditionally, graphical models are viewed as probabilistic models

& At first glance, is seems difficult to dissociate graphical models from the
probabilistic view (think ‘“Bayesian networks”’).

@ Energy-Based Factor Graphs are an extension of graphical models to
non-probabilistic settings.

@ An EBFG is an energy function that can be written as a sum of ‘““factor”

functions that take different subsets of variables as inputs.

& Basically, most algorithms for probabilistic factor graphs (such as belief
prop) have a counterpart for EBFG:

» Operations are performed in the log domain
» The normalization steps are left out.

Yann LeCun t New York University
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_Energy-Based Factor Graphs

& When the energy is a sum of partial energy functions (or when the

probability is a product of factors):

» An EBM can be seen as an unnormalized factor graph in the log
domain

» Our favorite efficient inference algorithms can be used for inference
(without the normalization step).

» Min-sum algorithm (instead of max-product), Viterbi for chain
graphs

» (Log/sum/exp)-sum algorithm (instead of sum-product), Forward
algorithm in the log domain fonpchain graphs

E1xzD) | |E2z1.22)| |E3(22.23)| |EBAZ3Y)

/N NV VN

X /71 /72

Yann LeCun * New York University




; EBEG for S puts: Sequences, Graphs, Images

M

& Structured outputs

» When Y is a complex object with components that must satisfy
certain constraints.

& Typically, structured outputs are sequences of symbols that must satisfy
“srammatical’”’ constraints

» spoken/handwritten word recognition
» spoken/written sentence recognition
» DNA sequence analysis

» Parts of Speech tagging

» Automatic Machine Translation

@ In General, structured outputs are collections of variables in which
subsets of variables must satisfy constraints

» Pixels in an image for image restoration
» Labels of regions for image segmentations

@ We represent the constraints using an Energy-Based Factor Graph.

Yann LeCun t New York University



; Energy-Based Factor Graphs: Three Inference Problems

& X: input, Y: output, Z: latent variables, Energy: E(Z,Y,X)

& Minimization over Y and Z
» B(Y,X)=minE(ZY,X). Y*=argminycyB(Y, X).
& Min over Y, marginalization over Z (E(X,Y) is a “free energy”’)

>  B(X,)Y)= —llog BE(RY.X) Y = argminy cy E(Y, X).

ze€Z
@ Marginal Distribution over Y PVIX e~ BE(Y,X)
( | ) o E_QE(Q;X) j

>

fyey

E1X,z) | |E2Z1,22)| |B3(Z2,73)| | E4(Z3,Y)
/ AV AV N N
71 72 73

X Y
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Energy-Based Factor Graphs: simple graphs
R E——————

@ Sequence Labeling ~ y* _ argminygy,ZezE(Zﬂ Y, X).

» Output is a sequence

Y1,Y2,Y3,Y4......

» NLP parsing, MT,
speech/handwriting
recognition, biological
sequence analysis

» The factors ensure
grammatical consistency

» They give low energy to
consistent sub-
sequences of output
symbols

» The graph is generally
simple (chain or tree)/ X

» Inference is easy
(dynamic programming)

Yl Y4
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Energy-Based Factor Graphs: complex/loopy graphs

,_

@ Image restoration Y™ = argminy-o, E(Y, X).

» The factors ensure
local consistency on
small overlapping
patches

» They give low energ
to “clean” patches,
given the noisy
versions

» The graph is loopy
when the patches
overlap. >

» Inference is difficult, |
particularly when the
patches are
large,and when the e A, Sl
number of greyscale X Y
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Efficient Inference in simple EBFG

& The energy is a sum of ‘“factor” functions, the graph is a chain

& Example:
»Z1, Z2, Y1 are binary )
» Z2 is ternary @

» A naive exhaustive
inference would require

2X2X2X3 energy [ E.(X, Zy) [Eb(X Z1, Zz)] [ Ec(Z3, Y1) ] ’ Eq4(Y1,Y3) ]
evaluations (= 96 factor /\ 7\\ //\\ //\\
evaluations) X 71 7 Y, Ys

» BUT: Ea only has 2 possible
input configurations, Eb
and Ec have 4, and Ed 6.

» Hence, we can precompute
the 16 factor values, and &>
put them on the arcs i

graph. :
» A path in the graph is a A £4(0.0)
ranfin nf variahla Z Zo Y1 Y5
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[EQ(X,Zl) ] [Eb(X,Zl,ZQ)] E.(Z3,Y1) ][ Ed(Yl,Yz)]

PN IR NN
XM Z 1/ \Z 2/ \ Yl/ \Y2

Y* = argminYEy?ZEZE(Zj Yj X)
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’ EnBed Belief Prop:

Minimization over Latent Variables
@ The previous picture shows a chain graph of factors with 2 inputs.

@ The extension of this procedure to trees, with factors that can have
more than 2 inputs is the “min-sum” algorithm (a non-probabilistic

form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-ring
algebra (min instead of sum, sum instead of product), without the

normalization step.
» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun * New York University



[EQ(X,Zl) ] [Eb(X,Zl,ZQ)] E.(Z3,Y1) ][ Ed(Yl,Yz)]

PN IR NN
XM Z 1/ \Z 2/ \ Yl/ \Y2

1
Y* — argminYey — E log/ G_BE(Z,Y,X)- 5
zEZ

log/sum/exp-SUM Alg., Forward Algorithm P
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‘ Enesed Belief Prop:

. Marginalization over Latent Variables
“_mmm NS

& The previous picture shows a chain graph of factors with 2

inputs.
» Going along a path: add up the energies 4 .
» When several paths meet: compute —5108;26_’6 7

@ The extension of this procedure to trees, with factors that can
have more than 2 inputs is the ‘‘[log/sum/exp]-sum” algorithm

(a non-probabilistic form of belief propagation)

& Basically, it is the sum-product algorithm with a different semi-
ring algebra (log/sum/exp instead of sum, sum instead of

product), and without the normalization step.
» [Kschischang, Frey, Loeliger, 2001][McKay's book]

Yann LeCun * New York University



@ Linearly Parameterized Factors A

EW,Y,X)= > W'f(X,Yn,Yo). -

(m,n)eF / Iy \

Yann LeCun



E(W,Y, X)

1nearly Parameterlzed Factors/+ /'
Negative Log Likelihood Loss =

(X, Y1,Ys) I\f (X,Y2,Y3 ] [f(X Ys Y)]

yConditional Random Flelds

IS — Yl/\/|\ Ys Y,
@ Linearly Parameterized Factors + NLL loss = CRF

» [Lafferty, McCallum, Pereira, 2001]

P
1 S T
Lon(W) = FZWTF(X YY) + B1ogze, BWF(X%y),
=1 yey
P
oL(W) 1 i i
a00) _ LS v - X FC ) P,
= Ve implest/best learni
; t/best
| e—BWTF(X ) simplest/best learning
Pyl X', W) = . procedure:

T T a4/
e~ BWHF(X*y') , ,
nyey stochastic gradient

Yann LeCun * New York University



Perceptron Loss = ? ? ?
o) || frexnn]

% Yz/[\ Y3 Y,
X

@ Linearly Parameterized Factors + Perceptron loss
» [LeCun, Bottou, Bengio, Haffner 1998, Collins 2000, Collins 2001]

P
Lperceptron(W) = — ST EW, Y XY — BV, Y, XY,
1=1
1 P
ﬁperceptron(W) — F Z WT (F(X%a Yz) - F(X%;Y*z)) .
1=1

W W —n(F(X"Y")~F(X",Y*").

(but [LeCun et al. 1998] used non-linear factors)

Yann LeCun * New York University




E(W,Y, X)

A1nearly Parameterlzed Factors T /'

Hinge Loss =
P [fXYY] [f(XY Y)]

Yi Y5 Y3 Y,
@ Linearly Parameterized Factor + Hinge loss

» [Altun et a. 2003 Taskar et al. 2003]

Lhinge(W) = Zmax 0,m+ EW,Y", X)) — E(W,Y", X%)) +~||[W]>.
=1

1 S
Lhinge(W) = - Z max (0,m + WHTAF(XE YY) 4+ ~||[W]|?,
i=1
AF(X'Y") =F(X"Y") — F(X',Y?)
Simple gradient descent rule:

It AF(Xi, Y?") > —m then W «— W — nAF(Xi, Yi) — 27W
Can be performed in the dual (like an SVM)

Yann LeCun



.Non-Linear Factors

@ Energy-Based sequence labeling systems trained discriminatively have

been used since the early 1990's

& Almost all of them used non-linear factors, such as multi-layer neural nets

or mixtures of Gaussians.
@ They were used mostly for speech and handwriting recognition

@ There is a huge literature on the subject that has been somewhat ignored

or forgotten by the NIPS and NLP communities.

& Why use non linear factors?

» :-( the loss function is non-convex

» :-0 You have to use simple gradient-based optimization algorithms,
such as stochastic gradient descent (but that's what works best
anyway, even in the convex case)

» :-) linear factors simply don't cut it for speech and handwriting
(including SVM-like linear combinations of kernel functions)

Yann LeCun t New York University



; Deep Factors / Deep Graph: ASR with TDNN/HM

& Discriminative Automatic Speech Recognition system with HMM and

various acoustic models

» Training the acoustic model (feature extractor) and a
(normalized) HMM in an integrated fashion.

& With Minimum Empirical Error loss
» Ljolje and Rabiner (1990)

& with NLL:
» Bengio (1992)
» Haffner (1993)
» Bourlard (1994)

& With MCE
» Juang et al. (1997)

& Late normalization scheme (un-normalized HMM)

» Bottou pointed out the label bias problem (1991)
» Denker and Burges proposed a solution (1995)

Yann LeCun * New York University




_Example 1: Integrated Disc. Training with Sequence Alignment

B

& Spoken word recognition with trainable elastic templates and trainable
feature extraction [Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]

Object models

(elastic template)

Sequence of

feature vectors

Trainable feature

extractors

Input Sequence

A
|

/

(acoustic vectors)

Yann LeCun

Energies Switch

LVQ2 Loss

Warping  Category
(latent var) (output)

t New York University
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: Example: 1-D Constellation Model (a.k.a. Dynamic Time Warping)

& Spoken word recognition with trainable elastic templates and trainable

feature extraction [Driancourt&Bottou 1991, Bottou 1991, Driancourt 1994]
& Elastic matching using dynamic time warping (Viterbi algorithm on a trellis).

& The corresponding EBFG is implicit (it changes for every new sample).

Energy
Trellis

(elastic template)

Object models

HOUOUD wenora

Sequence of (latent var)

feature vectors

Yann LeCun

t New York University
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Deep Factors / Deep Graph: ASR with TDNN/DTW

& Trainable Automatic Speech Recognition system with convolutional
nets (TDNN) and dynamic time warping (DTW)

AEW,Z,Y,X)
@ Training the feature s w
”~
extractor as part of the lr,7,1 <
”/ 7 7/
whole process. . Wz~ DIW
A
& with the LVQ2 Loss : feature | vectors t L
» Driancourt and [ =<~ -]—l
Bottou's speech 1\ ? ? :
recognizer (1991) [ |
TD ]
@ with NLL: NN |
» Bengio's speech A word templates |
recognizer (1992) L d'.
» Haffner's speech = th‘gcl)erxilclz)n
recognizer (1993)
X (acoustic vectors) A Y

Yann LeCun t New York University



Complex Trellises: procedural representation of trellises

@ When the trellis is too large, we cannot store it in its entirety in

memory.
» We must represent it procedurally

& The cleanest way to represent complex graphs proceduraly is

through the formalism of finite-state transducer algebra
» [Mohri 1997, Pereira et al.]

Yann LeCun * New York University



‘; ep Factors/ g sonzv

Viterbi iy ittty Ittt
N »
3 2
Grsel W‘

@ Handwriting Recognition with . A

Graph Transformer Networks 4

. . . Path Selector 1"/ ““““““ .

& Un-normalized hierarchical ?

HMMs 2

:

:

|

G mn l

» Trained with Perceptron loss fint UOl/‘f. i
[LeCun, Bottou, Bengio, i
Haffner 1998] !
|

:

|

|

|

|

|

|

:

» Trained with NLL loss
[Bengio, LeCun 1994], Recognition
[LeCun, Bottou, Bengio, Transformer
Haffner 1998]

o ™
(3227) (path
@ Latent variable = segmentation X vy oz

Yann LeCun t New York University

@ Answer = sequence of symbols




m

"End-to-End Learning.

M&J

E""-f%?"“’st @ Making every single module in the

system trainable.

Objective Function

actual / \desi red & Every module is trained simultaneously

output tput o .
P ourpt so as to optimize a global loss function.
t "two faces"
Context ual
postprocessor
Recognizer
I tunable
(trainable)
Segmenter parameters
Locator
!
0

Yann LeCun * New York University
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‘ Using Graphs instead of Vectors.

B

traditional graph

radient-based transformer | @ Whereas traditional learning
earner network

i od—size St i machines manipulate fixed-size
vectors Varlables grapns

: vectors, Graph Transformer
A 0 A .
_'J ~ 7 Networks manipulate graphs.

Layer Graph
K

f
|
]

Graph
Transformer

Lo
0

Yann LeCun

t New York University



Transformer

& Variables:
» X: input image
» Z: path in the interpretation
graph/segmentation

» Y. sequence of labels on a
path

@ Loss function: computing the

energy of the desired answer:

E(W,Y, X)

Yann LeCun

[0.37i+1)

pras CLAMPED PHASE

ot

b‘r\ 4[unx+u-/.

| Viterbi Tansformer *
Aok +[2440)
% 6\[3;55(?“/7'
ey v

|nterpretation
Graph

Gint

Fecognition
Trambmear

TI'BE

w—

Meural Net
Weights

Segmentation
Graph

G

=g

|  Segmenter |

W

t New York University



3 [Aa4f0 =" 408} =

g Path Selector
Desined I _
Answer 3 [0.1]0) 4 [0 47i-1) ntepretation
5[2.3](0) —a2p~ Graph
Gint
3 [3.4]10)
4 [4.4]10y
Fecognition
Tambmar
W

] |
Vbt ﬁ) Sogeryir
? L‘ Geeg

Segmenter

-
K1

Yann LeCun * New York University




[0.7](+1)

s CLAMPED PHASE

Covit b"‘t\uunxn]-/.

| Viterbi Tansformer *
63\[&1 I“w + [L*IU];.
3 [34fT 4+[0B)+1)

nagn Path Selector
Desired I _
Answer 3 [0 110 4 [04]-1) 1[0.1]-1) ntepretation
2310 4124 Grap
Gint
Facogniticn
W Tambmar
MNeuml Met T rec
Weights '

Yann LeCun

t New York University



e Je=s

Transformer FREE/UNCLAMPED PHASE /?\

3['31111 1]3*['”]( 1]31[”11: -1

1

I'Viterbi Transformer |

& Variables: /
3l

» X: input image

» Z: path in the interpretation r::t
graph/segmentation
» Y. sequence of labels on a

path

4 4 1 TIEnsi:-n';er
N WIN ; ¢ ¢ g1 T ¢ MM T .-
& Loss function: computing the  wegns

constrastive term:

E(W,Y,X)

Yann LeCun * New York University



Transformer

& Example: Perceptron loss

@ Loss = Energy of desired
answer — Energy of best

answer.
» (no margin)

Yann LeCun

Loss Function

[0.1](+1)
.71+1) % " -1
3[0.1]{+1)
CT "t + k)

3['1I 1]'1-1]\84['34]': 1]31[”11 -1l

| Viterbi Tansformer §

3 [34FD 4[oaf+1]
ll34ll I E{H BE Eaur I

Desired ‘

| Viterbi Trﬂ nsformer |

1 [3.1]i-1 |ntempretation
4[24 Graph
Gint

\en oo (o] et

Tamtmear

w  —
T
Meuml Met Mec
Weights
‘ Seqmentation
< Gaph
G seg

t New York University



Loss Function
[3]i+1)

@71k 1) [0.6](-1)

3 [0.1](+1)
o]

C "bt\ﬂun]in]"’. S

3 [0.1]i-1) [0.4]i—1) g1 [O1F-1]
I Viterbi Tansformer :|| 15 Hl t H J"LI'

A[oak+ +[24}0]
G. 6\\ '_? Viterbi Transformer
3[34Fa +[OEY+1]

T Path Selector
Desired

Answer 3 [0.1]i0) 4 [04]1-13 1[0.1]i-1) Intepretation
5 [2.3](0) 4[2 Graph
Gint
Facognition
W Tamsibmar
T
Meuml Net rec
Weights

Yann LeCun

t New York University



W“! : ' — "Script'

' . o A
Global Training Helps Viterbl Graph
— — |
Beam Search
. . Transformer
& Pen-based handwriting recognition ]
Interpretation Graph
(for tablet computer) $
. Language
» [Bengio&LeCun 1995] Model ~ 0“Bg~=| __Compose
» Trained with NLL loss (aka MMI) Recognition Graph )
Recognition
Transformer
I
SDNNHMM [z Langusgs todel AMAP Graph
no giobaliraining e L LAV £330 2T 124 d‘i‘%ﬂ"

Wi gbalaiing . —— 2 AMAP Computation

+
HOS | Ne Language Model Segmentatlon Graph
no ghobaliraining TN TN TN TR TTT N )

with global fraining Segmentation
Transformer
HOS | 25K Word Lexicon Normalized Word
no ghobaliraining ERETHEERE (3
with globalfrainin 1.4 —
@ ° p— Word Normalization
o 3 1Q 15 E c i p t

Yann LeCun t New York University



Interpretations:

s aph Interpretation graph cut (2.0)
cap (0.8)
oy 0.8 cat (1.4)

Composition,

grammar graph

& The composition of two

graphs can be computed,

the same way the dot
product between two

vectors can be computed.

Graph Composition

& General theory: semi-ring

algebra on weighted finite-

Recognltion
Graph

state transducers and

acceptors.

Yann LeCun * New York University




1.1 discrdminant cost

DS b
. Check Reader . -
[ —— S — negative log-likellhood 4.3 3.2 negatlve log-llkellhood
Forwand Forward
' e ! =5-c2 all possible
& Graph transformer network corect Interpretation oQay,e -4} ﬁ o1 Interpretations
. + * - Grammar
trained to read check amounts. Compose Compose |~ .9
° ° ‘-__‘—\‘_‘—‘\_‘——_ ,—--"‘E:Ej'
& Trained globally with ‘ Recognition Graph S
q ~B" 238
Negative-Log-LikelihOOd loss. correct Character
answer Recognlzer
& 50% percent corrent, 49 % Segmentation Graph .,;d_éx; =
reject, 1% error (detectable g,egm‘;me,
later in the process. Fleld Graph b lsmsss
oo HRAE
i 45 |
& Fielded in 1996, used in many Field Locator
banks in the US and Europe. Check Graph oL
@ Processes an estimated 10% of S

all the checks written in the
UJS.

Yann LeCun t New York University
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Learning when the space of Y is huge
I ———

@ Jlearning when Y is in a high-dimensional continuous spaces
& Image restoration, Image segmentation

@ Unsupervised learning in high-dimensional space

Yann LeCun * New York University




Learning when the space of Y is huge

R ———————7—7 ]

& Solutions:

& Use an energy function such that contrastive term in the loss is either
constant or easy to compute

» e.g. Energy is quadratic: convex (inference is easy), integral of
exponential is easily computable or constant.

& Approximate the derivative of the contrastive term in the loss with a

variational approximation

& Simple sampling approximation:
» Pull down on the energy of the training samples

» Pull up on the energies of other configurations that have low
energy (that are threatening)

» Question: how do we pick those configurations?
» One idea: contrastive Divergence [Hinton 2000]

Yann LeCun t New York University



ontrastive Divergence

=

Mm“u‘l,

& To generate the ‘“bad” configurations:
& 1. Start from the correct value of Y
& 2. Pull down the energy of the correct value

& 3. To obtain a ‘“bad” configuration, go down the energy surface
with ‘“‘some noise”’

& 4. pull up the energy of the obtained configuration

A A
push down
S \NAL After <0
%ﬁ i training %n
= =
= K
= — o . — a
Y? Y* Y* Y*
Answer (Y) Answer (Y')

Yann LeCun * New York University



ontrastive Divergence

& To generate the ‘“bad” configurations:

& Hybrid Monte-Carlo Sampling: simulate a ball rolling down the
energy surface in Y space.

@@ Kick the ball in the a random direction (with a random

momentum), and run the simulation for a few iterations.

& The final configuration is quite likely to have lower energy than

t 4 \
push down
S ¢¢¢ After <0
>i i training %
= =
= =
= — o . — a
Y’L Y’l YZ Y’L
Answer (Y) Answer (Y')

Yann LeCun * New York University
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| Energy-Based Unsupervised Learning with Margin Loss
| ——— -

& Example: learning a spiral in 2D

@ Energy: | Y - F(W,Y)lI*2 where F is a 2-layer neural net
LY W)=xE(Y,  W)+max(0om—E(Y,W))

Yann LeCun * New York University
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Wide auto-encoder with sparse code
| ——

* Sparse Codes

* Limiting the information
content of the code prevents flat
energy surfaces, without the
need to explicitly push up the
bad points

* Idea 1s to make the high
dimensional code sparse by
forcing each variable to be zero

most of the time

Yann LeCun * New York University



hallenges of Visual Neuroscience (and Computer Vision) |

& The recognition of everyday objects is a very fast process.

» Experiments by Simon Thorpe and others have shown that the
recognition of common object is essentially “feed forward.”

» Not all of vision is feed forward (what would all those feed-back
connection be there for?).

@ How much of the visual system is the result of learning?

» How much prior structure must be built into the visual system to
enable it to learn to see?

» Are V1/V2/V4 neurons learned or hard-wired?

& If the visual system is learned, what is the learning algorithm?

» What learning algorithm can train neural network as “deep” as the
visual system (10 layers?).

@ Let's try to train an artificial vision system from end to end and see what

it can do.

Yann LeCun t New York University



Questions?

@ [s there a magic bullet for visual learning?

» Is there a general principle, or should we just resort to a
bunch of tricks?

» Is there a universal learning algorithm/architecture which,
given a small amount of appropriate prior structure, can
produce an intelligent vision system?

» Or do we need to accumulate a large repertoire of "modules”
to solve each specific problem an intelligent vision system
must solve. How would we assemble those modules?

& How far can we get by training a vision system end to end

» Let us train a complete vision system from raw pixels to
object categories, or to robot actions.

Yann LeCun t New York University
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An Old Idea for Local Shift Invariance

@@ [Hubel & Wiesel 1962]:

» simple cells detect local features

» complex cells “"pool” the outputs of simple cells within a
retinotopic neighborhood.

“Simple cells”
“Complex cells”

pooling subsampling

Multiple
convolutions \ /

Retinotopic Feature Maps

Yann LeCun

e ————

t New York University
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“The Multistage Hubel-Wiesel Architecture

m—:——ﬁﬁﬁg_“ =

& Building a complete artificial vision system:

» Stack multiple stages of simple cells / complex cells layers

» Higher stages compute more global, more invariant features
» Stick a classification layer on top

» [Fukushima 1971-1982]

© neocognitron

» [LeCun et al. 1988-2007]

& convolutional net

» [Poggio et al. 2002-2006]
© HMAX

» [Ullman 2002-2006]

¢ fragment hierarchy

» [Lowe 2006]
¢ HMAX

(5]

(1] H
B

)
5.-m O

=?:1’-A'

& QUESTION: How do we

find (or learn) the filters?

..

Yann LeCun * New York University
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_Convolutional Net Architecture, Supervised Learning

SN S S S ]

b N
v — v -7 d 5%5
5x5 X2 % 2x2 convolution
convolution pooling/ convolution pooling/
subsampling subsampling

& Convolutional layers (simple cells): all units in a feature plane share the same weights
@ Pooling/subsampling layers (complex cells): for invariance to small distortions.

& Supervised gradient-descent learning using back-propagation

@@ The entire network is trained end-to-end. All the layers are trained simultaneously.

Yann LeCun * New York University



Convolutional Network for Object Recognitio

S =g ss i
L 3
ayet . A Layer 6
24@18x18 ayer
Stereo Layer 1 . Layer 5 Fully
. Layer 2 24@6x6
input 8@92x92 100 connected
8@23x23
2@96x96 (500 weights)

/v

4x4
5x5 .
, subsampling convolution 3x3 .
convolution ~convolution
(96 kernels) subsampling
(16 kernels) (2400 kernels)

@ 96X69 input, 90,857 free parameters, 3,901,162 connections.

il The architecture alternates convolutional layers (feature detectors) and subsampling layers
(local feature pooling for invariance to small distortions).

@ The entire network is trained end-to-end (all the layers are trained simultaneously).

i A gradient-based algorithm is used to minimize a supervised loss function.

t New York University

Yann LeCun



Generic Object Detection and Recognition

with Invarlance to Pose and Illumlnatlon

o 50 toys belonging to 5 categories: animal, human figure, airplane, truck, car
i 10 instance per category: 5 instances used for training, 5 instances for testing

i Raw dataset: 972 stereo pair of each object instance. 48,600 image pairs total.

'a For each instance:

- ek e g oF e D oae R

Ia 18 azimuths
i 0 to 350 degrees every 20 s 4 ;‘3%/ 3 @ . 'H
degrees ﬁw— & 1 & /ﬁ g g /‘E
il 9 elevations W % 1% _‘A # F & & %
i 30 to 70 degrees from
horizontal every 5 degrees 2 . S Ly fiel ¥ ._
I; 6 illuminations % M w ‘ ~ M
il on/off combinations of 4 . r“ | & & X o e ﬁ_:,
lights \a ¥ \a \4 ) \# \/ \# %
2 t o o . .
W2 cameras (stereo) Training instances Test instances
Ia 7.5 cm apart
i 40 cm from the object

Yann LeCun * New York University
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Data Collection, Sample Generation
| -

Image capture setup _ Objects are painted green so that:

- all features other than shape are removed

- objects can be segmented, transformed,

and composited onto various backgrounds
Original image Object mask

Shadow factor Composite image

Yann LeCun * New York University
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& pooling/subsampling layer builds

Alternated Convolutions and Subsampling T EEE.
mﬁfg—“‘l_ — R ————— : plane
E'Ela‘.tr‘uck
=!'“_ ol e
« . v }‘lli" II 3 -.;.car
Simple cells ‘ - §
“Complex cells” %
1]
.. -aq-i'..i:
Lo
i
-
: Loh)
Pooling ok
Multiple subsampling 213
convolutions oy S 2
a8
@ Local features are extracted 2
everywhere. g
o

robustness to variations in

feature locations.

Yann LeCun * New York University
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AN ormalized-Uniform dataset: Test Error Rates

el e e e e

& Linear Classifier on raw stereo images: 30.2% error.
@@ K-Nearest-Neighbors on raw stereo images: 18.4% error.
@@ K-Nearest-Neighbors on PCA-95: 16.6 % error.
& Pairwise SVM on 96x96 stereo images: 11.6 % error
@@ Pairwise SVM on 95 Principal Components: 13.3% error.
@@ Convolutional Net on 96x96 stereo images:  5.8% error.
e ot B e o oF K Qo (R
& 4 & 1 4 5 8 &£ 4
Wk R A SN K
WNNASs VEeBYX
CTEOCOUHR ISR

Training instances Test instances

Yann LeCun * New York University




@ Jittered-Cluttered Dataset:
& 291,600 stereo pairs for training, 58,320 for testing

¥ Objects are jittered: position, scale, in-plane rotation, contrast, brightness,
backgrounds, distractor objects,...

i Input dimension: 98x98x2 (approx 18,000)

Yann LeCun * New York University



Experiment 2: Jittered-Cluttered Dataset

mﬂﬁl“l- —

& SVM with Gaussian kernel

& Convolutional Net with binocular input:
@@ Convolutional Net + SVM on top:

& Convolutional Net with monocular input:
&® Smaller mono net (DEMO):

& Dataset available from http://www.cs.nyu.edu/~yann

Yann LeCun

43.3 %
7.8 %
5.9%

20.8 %

26.0%

error

error

error

error

error

t New York University
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Examples (Monocular Mode)
| S

Yann LeCun * New York University



ace Detection and Pose Estimation with a Convolutional EBM

@ Training: 52,850, 32x32 E*(W, X) = ming||Gw (X) — F(Z)||
grey-level images of faces,
52,850 selected non-faces. 7" = argminz| |GW (X) — F(Z)H

& Each training image was used

. . .. EW,Z, X
5 times with random variation ( ‘)
in scale, in-plane rotation, l
brightness and contrast.
d T ‘ G, (X)-F(2)
il 2" phase: half of the initial
negative set was replaced by G, (X V F(Z)
false positives of the initial analvtical
version of the detector convolutional -
' network ;nap ping .(;HIZ
W(p aram) A ace Iilanl (0]
4 A r )
Small E*(W,X): face X 7
Large E*(W,X): no face (Image) (pose)
. J \ J

[Osadchy, Miller, LeCun, NIPS 2004]

Yann LeCun

t New York University



Face Manifold

Low dimensional space

IG(X)-min_z F(Z)Ill — e G(X)

o
Face Manifold = o)

—p
parameterized by pose L\

Apply =) Mapping: G
t




Probabilistic Approach: Density model of joint P(face,pose)

mﬁ;‘ - - — S

Probability that image exp(—E(W, Z, X))

: : P(Xa Z) =
X 1s a face with pose Z fX,ZEimages,poses exp(—E(W, Z, X))
Given a training set of faces annotated with pose, find the W that

maximizes the likelihood of the data under the model:

exp(—E(W, Z, X))
[l exp(—E(W, Z, X))

P(faces + pose) =
X,Z efaces+pose fX,ZEimages,poses

Equivalently, minimize the negative log likelihood:

X, Zcfaces+pose X,Z€images,poses

f

COMPLICATED



Energy-Based Contrastive Loss Function
e

1
L(W) = LY (EW,Z, X +L—( min EW,Z,X)
" £+ pl X;Zefges—l—pose [ - ))] X,Z€bckgnd,poses ( )

LT (E(W,Z,X)) =E(W,Z,X)" =||Gw(X) - F(Z)|

Attract the network output Gw(X) to the

location of the desired pose F(Z) on the manifold

L (X,Zebg}égd’posesE(W Z, X))) = K exp (—minx, zebekend,poses||Gw (X) — F(Z)|])

Repel the network output Gw(X) away

from the face/pose manifold




Convolutional Net Architecture for Face Detection

m SESENE— ————

Cl: feature

8@ 2 Bx.2 8
b C3: f. maps

Input 20
, @10%10
32x32 51: f. maps 54: f. maps

, 20@5x5 C5: 120
B@ldxld F @5x5 AT
= - —

- Subsam I;.n i Lo ;
Convolutions i . subsampling  conpection
Convolutions Convaolutions

Hierarchy of local filters (convolution kernels),

sigmoid pointwise non-linearities, and spatial subsampling

All the filter coefficients are learned with gradient descent (back-prop)

Yann LeCun * New York University
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Facke Detection: Results

1

S

Yann LeCun

Data Set->| TILTED PROFILE MIT+CMU
False positives per image->| 4.42 | 269 | 0.47 | 3.36 0.5 1.28
Our Detector 90% | 97% | 67% | 83% 83% 88%
Jones & Viola (tilted) 90% | 95%
Jones & Viola (profile) 70% 83%




»ace Detection and Pose Estimation: Results

GOOSSENS - N-APAMS
OTLIB - COUTELIS-SOLE

Yann LeCun * New York University
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Training The Layers of a Convolutional N
S e

et Unsupervised

Supervised training of convolutional nets requires too

labeled many training samples

& Extract windows from the images
@ Train an unsupervised feature extractor on those windows

& Use the resulting features as the convolution kernels of a convolution

network
& Repeat the process for the second layer

@ Train the resulting network supervised.

Yann LeCun * New York University



\ Feature Representations f

@ Algorithm:

@ 1. find the code Z
that minimizes the
reconstruction
error AND is close
to the encoder
output

@ 2. Update the
weights of the
decoder to
decrease the
reconstruction
error

@ 3. Update the
weights of the
encoder to
decrease the
prediction error 7

Yann LeCun

Energy of encoder

t New York University



j Sparsifying Logistic

& Maps a code vector into a sparse code vector with components between 0

and 1 (most of which are near zero).

> EZssentiaIIy: a sigmoid function with a large adaptive threshold.
» Z! input unit

Z ) :
» I corresponding output unit
Bz,(k)
z,(k)=""——, i€[1..m] k€[1..P|,nE(0,1), >0
g, (k)
g,(k)=ne"*"+(1—n)g,(k—1)

& Expanding the denominator:
Bz,(k)
e 1

Bz, (k) Bz, (k—1) 2 Bz,(k—2)
e e

+n(l—n)e +n(1—n) + ...

& equivalent to a sigmoid with a large threshold:

_ 1
Zi(k): 1
— Bl z,(k)— log(

1—n
n

E,(k—1))]
1+e

Yann LeCun * New York University




: Sparsifying Logistic

Z.(/’c)zne | , i€|ll..m|, ke[1.. P|
’ g, (k)

£(k)=ne’ " +(1—n)E (k—1)

EXAMPLE o
Input: random variable uniformly distributed | | ‘ HU ““J
in [-1,1] JL{ Hli ‘ { Ll |]|. h Lhmm

Output: a Poisson process with firing rate

. n 0.1
determined byn andp . ' 830

* Increasing B the gain is increased and the L | || | { ‘Ll Al |H .
output takes almost binary values. 7 0.01
530

* Increasingnp more importance is given to M 1 H el
the current sample, a spike will be more SRS A B
likely to occur.

Yann LeCun * New York University



Berkeley data set

EIEE=E?E" = * 100,000 12x12 patches
ﬁ E%EE iﬂ%g + 20)%) units in the code

NS N SEE ° 5002
HAEE =8 8, 1

ol aFiS | kN
%
P
e |

B ¥ learning rate 0.001
k-
===H==$i * L1 regularizer 0.001

* fast convergence: < 30min.

-
e
i
s
ol -
-
»




200 decoder filters (reshaped columns of matrix W¢)




i O R O el 551 R S O NN et B : :
....nr.'.:..“.-...-. Encoder direct filters
SEEENNEANNES LA e
reEEN=ZFEHAEREASRNENR=E ¢

AR IS N LW e P N (R VD

STNEENSE=SSS NAL NN < 1

PR rEdn FIN A TR E =N Decoder reverse filters
== (cols. of Wq)



e

N atural 1mage patches - Berke,l.e:

AN F 5
e ———SSSSSS

test sample code word
“ codes are:
4 gparse
# almost binary
8 quite decorrelated

# in testing codes are produced by propagating the
idput patch through encoder and Sparsifying

L@gistic

@  controls sparsity

X

unit activity

controls the “bit content” in each code unit

code words from 200 randomly selected test patches
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What about an a autoencoder"

decoder ED(X, Z, WD) CODE Z
energy

I X — Dec(Z, Wo)lI?

| .
. |
. |
: |
| rectified and I
| A sparsified code :
| DECODER W,  |-ail— Sp. Logistic |-iff——

|
decoder |
reconstruction '

encoder
prediction

» ENCODER Wo

1Z — Enc(X,We)ll

encoder
IMAGE X energy Eo(X, Z, W¢)
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@ Handwritten Digit Dataset MNIST: 60,000 training samples, 10,000 test samples
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PP s SRS

)

ANSE

reconstructed

original without minimization
()
? R ? = 1 + 1 +1
)
+1 +1 + 0.8
+1 F +1 + 0.8
reconstructed
original without minimization difference
. .. | forward propagation through
oS
— - -F-
:" ; . encoder and decoder
reconstructed reconstructed
minimizing without minimization difference

7 - |7

after training there is no need to

minimize in code space
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: Best Results on MNIST (from raw images: no preprocessi)
[ ——— e e I

CLASSIFIER DEFORMATION  ERROR Reference
Knowledge-free methods

2-layer NN, 800 HU, CE 1.60  Simard et al., ICDAR 2003

3-layer NN, 5004300 HU, CE, reg 1.53  Hinton, in press, 2005

SVM, Gaussian Kernel 1.40  Cortes 92 + Many others

Unsupervised Stacked RBM + backprop 0.95  Hinton, Neur Comp 2006
Convolutional nets

Convolutional net LeNet-5, 0.80  Ranzato et al. NIPS 2006

Convolutional net LeNet-6, 0.70  Ranzato et al. NIPS 2006

Conv. net LeNet-6- + unsup learning 0.60  Ranzato et al. NIPS 2006
Training set augmented with Affine Distortions

2-layer NN, 800 HU, CE Affine 1.10  Simard et al., ICDAR 2003

Virtual SVM deg-9 poly Affine 0.80  Scholkopf

Convolutional net, CE Affine 0.60  Simard et al., ICDAR 2003
Training et augmented with Elastic Distortions

2-layer NN, 800 HU, CE Elastic 0.70  Simard et al., ICDAR 2003

Convolutional net, CE Elastic 0.40  Simard et al., ICDAR 2003

Conv. net LeNet-6- + unsup learning Elastic 0.39  Ranzato et al. NIPS 2006

Yann LeCun * New York University
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Tralnlng Convolutlonal Fllters

RN e )

CLASSIFICATION EXPERIMENTS

IDEA: improving supervised learning by pre-training
with the unsupervised method (*)

sparse representations & lenet6 (1->50->50->200->10)

=h
E—
H
a
-
w2
o
=
g
—
2]
H
(@)
@)
=
<
[E—
o
-

<
€

? The baseline: lenet6 initialized randomly

TEFLE
ENERE
e
AT
FENEE
TIREL"
RSN
e

Test error rate: 0.70%. Training error rate: 0.01%.

filters in first conv. 1

o
@
-

@ Experiment 1 )

* Train on 5x35 patches to find 50 features

+ Use the scaled filters in the encoder to initialize the kernels in
the first convolutional layer

PHIT&G
I o e
el E
S Hura
M=k Bk
! L'FINN;
1HYaN
roixa |(SREE
L IF]=
EMLAE FEORZH

Test error rate: 0.60 % . Training error rate: 0.00%.

@ Experiment 2

+ Same as experiment 1, but training set augmented by elastically distorted digits (random
initialization gives test error rate equal to 0.49%).
Test error rate: 0.39%. Training error rate: 0.23%.

(*)[Hinton, Osindero, Teh “A fast learning algorithm for deep belief nets” Neural Computaton 2006]
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.Learning Invariant Feature Hierarchies

@ Learning Shift Invariant Features

RECONS*UCTION ERROR RECONSTRUCTION ERROR

DECODER DECODER

INVARIANT
FEATURES
(CODE)

Z

FEATURES
(CODE)
Z

TRANSFORMATION
PARAMETERS U

ENCODER
ENCODER

INPUTY INPUTY

Standard Feature Extractor Invariant Feature Extractor

Yann LeCun * New York University



encoder shift-invariant decoder (d)

filtehak

input
image

feature

feature

maps

UOT)INIJSUOIIT

convolutions max : switch ™Maps convolutions
pooling tf ----------- t ------ upsampliﬁ
ransformation
encoder ecoder

parameters

Yann LeCun t New York University
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Shift Invariant Global Features on MNIST

M_,

@ Learning 50 Shift Invariant Global Features on MNIST:

» 50 filters of size 20x20 movable in a 28x28 frame (81 positions)
» movable strokes!

Yann LeCun * New York University



& Any character can be reconstructed as a

linear combination of a small number of

basis functions.

ORIGINAL  RECONS-
DIGIT TRUCTION

ACTIVATED DECODER

___—
BASIS FUNCTIONS |

(in feed-back layer)

I

|
L

red squares: decoder bases

Yann LeCun t New York University
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Learning Invariant Filters in a Convolutional Net

Figure 1: 50 7x7 filters in the first convolutional layer that were learned by the network
trained supervised from random initial conditions with 600K digits.

FEMMEACrSs IEUANMITARRF IDGAR N E
AN FANIINFeL'idl e 192104

Figure 2: 50 7x7 filters that were learned by the unsupervised method (on 60K digits),
and that are used to initialize the first convoltional layer of the network.

Figure 3: 50 7x7 filters in the first convolutional layer that were learned by the network

trained supervised from the initial conditions given by the unsupervised method (see fig.2)
with 600K digits.

Yann LeCun * New York University
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mm,mf,

Influence of Number of Training Samples
I ———

R e Supenised baining of the whole netwark 7
= P - “\\ .................................................... —&#— Unsupervised fraining of the feature axtractarsg.
Th e "‘u,\\ ................................................ — + — Random feature exfractars

i

&

% Classification error

0.5
200 1000 2000 5000 10000 20000 40000 0000

Size of labelled training set

t New York University

Yann LeCun
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Generic Object Recognition: 101 categories + background

& Caltech-101 dataset: 101 categories

» accordion airplanes anchor ant barrel bass beaver binocular bonsai brain
brontosaurus buddha butterfly camera cannon car_side ceiling_fan cellphone
chair chandelier cougar_body cougar_face crab crayfish crocodile crocodile_head
cup dalmatian dollar_bill dolphin dragonfly electric_guitar elephant emu
euphonium ewer Faces Faces_easy ferry flamingo flamingo_head garfield
gerenuk gramophone grand_piano hawksbill headphone hedgehog helicopter ibis
inline_skate joshua_tree kangaroo ketch lamp laptop Leopards llama lobster
lotus mandolin mayfly menorah metronome minaret Motorbikes nautilus octopus
okapi pagoda panda pigeon pizza platypus pyramid revolver rhino rooster
saxophone schooner scissors scorpion sea_horse snoopy soccer_ball stapler
starfish stegosaurus stop_sign strawberry sunflower tick trilobite umbrella watch
water_lilly wheelchair wild_cat windsor_chair wrench yin_yang

@ Only 30 training examples per category!

& A convolutional net trained with backprop (supervised) gets 20 %

correct recognition.

@ Training the filters with the sparse invariant unsupervised method

Yann LeCun t New York University



_Training the 1* stage filters

@ 12x12 input windows (complex cell receptive fields)
& 9x9 filters (simple cell receptive fields)

& 4x4 pooling

64 33x33
feature maps

simp le-cell layer

complex-cell
F layer
input image L
140x140 Cdllee Al o
U . r
B ad -
s e T B
: l- Gf = bf

- oo
l} 4x4 pooling
convolution mGUREing
&4 9x9 filters

Yann LeCun * New York University
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_Training the 2" stage filters

@ 13x13 input windows (complex cell receptive fields on 1* features)
& 9x9 filters (simple cell receptive fields)
& Each output feature map combines 4 input feature maps

& 5x5 pooling

64 33x33
feature maps complex-cel e oe
layer feature maps
oo k| © .
&0 |/ :
a0 [A|H -
@ |
oo M| k]
5x5 pooling
convolution squashing
2048 9x9 filters

second level feature extraction

Yann LeCun t New York University
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Generic Object Recognition: 101 categories + background

@ 9x9 filters at the first level

ST L TR e T
dnLENPR P el D I
Bl P T A
W T A TSR

@ 9x9 filters at the second level

AL L A | AR PR
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: Shift-Invariant Feature Hierarchies on Caltech-101 .

@ 2 layers of filters input 8 among the 64 33x33 feature maps 2 among the 512
trained image x5

unsupervised 140x140

featlire maps

Y T

& supervised

classifier on top.

&® 54% correct on
Caltech-101 with

30 examples per

N

© © g0 O O

class

¥ 20% correct with

purely supervised

max-poolin

[ )»-] max-pooling _L.I->

4x4 window 5x5 window

BEEE EEES

backprop nd squashin and squashin
convolution convolution ‘
64 9x9 filters 2048 9x9 filters

first level second level

feature extraction feature extraction

Yann LeCun * New York University
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j Recognition Rate on Caltech 101

background
— —3%

Great Satisfaction

i

100%

1 479,

Yann LeCun * New York University




_Practical Conclusion
| — NN

& The Multi-stage Hubel-Wiesel Architecture can be trained to

recognize almost any set of objects.

» Supervised gradient descent learning requires too many
examples

» Unsupervised learning of each layer reduces the number of
necessary training samples

@ Invariant feature learning preserves the nature of each feature, but
throws away the instantiation parameters (position).

@ Invariant feature hierarchies can be trained unsupervised

» on large training sets: the recognition rate is almost as good as
supervised gradient descent learning

» on small training sets: the recognition rate is much better.

Yann LeCun t New York University



