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Plan

• Bayesian interpretation of Regularization

• Bayesian interpretation of the regularizer

• Bayesian interpretation of quadratic loss

• Bayesian interpretation of SVM loss



Bayesian Interpretation of RN, SVM, and
BPD in Regression

Consider

min
f∈H

1

�

�∑
i=1

(yi − f(xi))
2 + λ‖f‖2

K

We will show that there is a Bayesian interpretation of RN

in which the data term – that is the term with the loss

function – is a model of the noise and the stabilizer is a

prior on the hypothesis space of functions f .



Definitions

1. D� = {(xi, yi)} for i = 1, · · · , � is the set of training

examples

2. P[f |D�] is the conditional probability of the function f

given the examples g.

3. P[D�|f ] is the conditional probability of g given f , i.e.

a model of the noise.

4. P[f ] is the a priori probability of the random field f .



Posterior Probability

The posterior distribution P[f |g] can be computed by ap-

plying Bayes rule:

P[f |D�] =
P[D�|f ] P[f ]

P(D�)
.

If the noise is normally distributed with variance σ, then

the probability P[D�|f ] is

P[D�|f ] =
1

ZL
e
− 1

2σ2

∑�
i=1(yi−f(xi))

2

where ZL is a normalization constant.



Posterior Probability

Informally (we will make it precise later), if

P[f ] =
1

Zr
e−‖f‖2

K

where Zr is another normalization constant, then

P[f |D�] =
1

ZDZLZr
e
−
(

1
2σ2

∑�
i=1(yi−f(xi))

2+‖f‖2
K

)



MAP Estimate

One of the several possible estimates of f from P[f |D�] is

the so called MAP estimate, that is

maxP[f |D�] = min
�∑

i=1

(yi − f(xi))
2 + 2σ2‖f‖2

K .

which is the same as the regularization functional if

λ = 2σ2/�.



Bayesian Interpretation of the Data Term
(quadratic loss)

As we just showed, the quadratic loss (the standard RN

case) corresponds in the Bayesian interpretation to as-

suming that the data yi are affected by additive indepen-

dent Gaussian noise processes, i.e. yi = f(xi) + εi with

E[εjεj] = 2δi,j

P(y|f) ∝ exp(−∑
(yi − f(xi))

2)



Bayesian Interpretation of the Stabilizer

The stabilizer ‖f‖2
K is the same for RN and SVM. Let us

consider the corresponding prior in a Bayesian interpreta-

tion within the framework of RKHS:

P(f) =
1

Zr
exp(−‖f‖2

K) ∝ exp(−cTKc).

The most likely hypotheses are the ones with small RKHS

norm.



Bayesian Interpretation of RN and SVM.

• For SVM the prior is the same Gaussian prior, but the

noise model is different and is NOT Gaussian additive

as in RN.

• Thus also for SVM (regression) the prior P(f) gives a

probability measure to f in terms of the the norm in

the RKHS defined by K.



Why a Bayesian Interpretation can be
Misleading

Minimization of functionals such as HRN(f) and HSV M(f) can be inter-
preted as corresponding to the MAP estimate of the posterior prob-
ability of f given the data, for certain models of the noise and for a
specific Gaussian prior on the space of functions f .

Notice that a Bayesian interpretation of this type is inconsistent with
Structural Risk Minimization and more generally with Vapnik’s analysis
of the learning problem. Let us see why (Vapnik).



Why a Bayesian Interpretation can be
Misleading

Consider regularization (including SVM). The Bayesian interpretation
with a MAP estimates leads to

minH[f ] =
1

�

�∑
i=1

(yi − f(xi))
2 +

1

�
2σ2‖f‖2

K
.

Regularization (in general and as implied by VC theory) corresponds
to

minHRN [f ] =
1

�

�∑
i=1

(yi − f(xi))
2 + λ‖f‖2

K
.

where λ is found by solving the Ivanov problem

min
1

�

�∑
i=1

(yi − f(xi))
2

subject to

‖f‖2

K
≤ A



Why a Bayesian Interpretation can be
Misleading

The parameter λ in regularization and SVM is a function of the data
(through the SRM principle) and in particular is λ(�). In the Bayes
interpretation λ̃ depends on the data as 2σ2

�
: notice that σ has to be

part of the prior and therefore has to be independent of the size � of
the training data. It seems unlikely that λ could simply depend on 1

�
as

the Bayesian interpretation requires for consistency. For instance note
that in the statistical interpretation of classical regularization (Ivanov,
Tikhonov, Arsenin) the asymptotic dependence of λ on � is different
from the one dictated by the Bayesian interpretation. In fact (Vapnik,
1995, 1998)

lim
�→∞

λ(�) = 0

lim
�→∞

�λ(�) = ∞
implying a dependence of the type λ(�) = O(log�/�). A similar de-
pendence is probably implied by results of Cucker and Smale, 2002.
Notice that this is a sufficient and not a necessary condition. Here an
interesting question (a project?): which λ dependence does stability
imply?



Bayesian Interpretation of the Data Term
(nonquadratic loss)

To find the Bayesian interpretation of the SVM loss, we

now assume a more general form of noise. We assume that

the data are affected by additive independent noise sam-

pled form a continuous mixture of Gaussian distributions

with variance β and mean μ according to

P(y|f) ∝ exp
(
−

∫ ∞
0

dβ
∫ ∞
−∞

dμ
√

βe−β(y−f(x)−μ)2P(β, μ)
)

,

The previous case of quadratic loss corresponds to

P(β, μ) = δ

(
β − 1

2σ2

)
δ(μ).



Bayesian Interpretation of the Data Term
(absolute loss)

To find P(β, μ) that yields a given loss function V (γ) we

have to solve

V (γ) = − log
∫ ∞
0

dβ
∫ ∞
−∞

dμ
√

βe−β(γ−μ)2P(β, μ),

where γ = y − f(x).

For the absolute loss function V (γ) = |γ|. Then

P(β, μ) = β−2e
− 1

4β δ(μ).

For unbiased noise distributions the above derivation can

be obtained via the inverse Laplace transform.



Bayesian Interpretation of the Data Term
(SVM loss)

Consider now the case of the SVM loss function Vε(γ) =

max{|γ| − ε,0}. To solve for Pε(β, μ) we assume indepen-

dence

Pε(β, μ) = P(β)Pε(μ).

Solving

Vε(γ) = − log
∫ ∞
0

dβ
∫ ∞
−∞

dμ
√

βe−β(γ−μ)2P(β)Pε(μ)

results in

P(β) = β−2e
− 1

4β ,

Pε(μ) =
1

2(ε + 1)

(
χ[−ε,ε](μ) + δ(μ − ε) + δ(μ + ε)

)
.



Bayesian Interpretation of the Data Term
(SVM)



Bayesian Interpretation of the Data Term
(SVM loss and absolute loss)

Note limε→0 Vε = |γ|

So

P0(μ) =
1

2

(
χ[−0,0](μ) + δ(μ) + δ(μ)

)
= δ(μ)

and

P(β, μ) = β−2e
− 1

4β δ(μ),

as is the case for absolute loss.


