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σ-algebra

A σ-algebra Σ over a set Ω is a collection of subsets of Ω

that is closed under countable set operations:

1. ∅ ∈ Σ.

2. E ∈ Σ then so is the complement of E.

3. If F is any countable collection of sets in Σ, then the

union of all the sets E in F is also in Σ.



Measure

A measure µ is a function defined on a σ-algebra Σ over a

set Ω with values in [0,∞] such that

1. The empty set has measure zero: µ(∅) = 0

2. Countable additivity: if E1, E2, E3, ... is a countable

sequence of pairwise disjoint sets in Σ,

µ



∞⋃

i=1

Ei


 =

∞∑

i=1

µ(Ei)

The triple (Ω,Σ, µ) is called a measure space.



Lebesgue measure

The Lebesgue measure λ is the unique complete translation-

invariant measure on a σ-algebra containing the intervals

in IR such that λ([0,1]) = 1.



Probability measure

Probability measure is a positive measure µ on the mea-

surable space (Ω,Σ) such that µ(Ω) = 1.

(Ω,Σ, µ) is called a probability space.

A random variable is a measurable function X : Ω 7→ IR.

We can now define probability of an event

P (event A) = µ
(
{x : IA(x) = 1}

)
.



Expectation and variance

Given a random variable X ∼ µ the expectation is

IEX ≡
∫

Xdµ.

Similarly the variance of the random variable σ2(X) is

var(X) ≡ IE(X − IEX)2.



Convergence

Recall that a sequence xn converges to the limit x

xn → x

if for any ε > 0 there exists an N such that |xn − x| < ε for

n > N .

We say that the sequence of random variables Xn con-

verges to X in probability

Xn
P−→ X

if

P (|Xn −X| ≥ ε) → 0

for every ε > 0.



Convergence in probability and almost
surely

Any event with probability 1 is said to happen almost

surely. A sequence of real random variables Xn converges

almost surely to a random variable X iff

P
(

lim
n→∞Xn = X

)
= 1.

Convergence almost surely implies convergence in proba-

bility.



Law of Large Numbers. Central Limit
Theorem

Weak LLN: if X1, X2, X3, ... is an infinite sequence of i.i.d.

random variables with finite variance σ2, then

Xn =
X1 + · · ·+ Xn

n

P−→ IEX1

In other words, for any positive number ε, we have

lim
n→∞P

(∣∣∣Xn − IEX1

∣∣∣ ≥ ε
)
= 0.

CLT:

lim
n→∞Pr

(
Xn − µ

σ/
√

n
≤ z

)
= Φ(z)

where Φ is the cdf of N(0,1).



Useful Probability Inequalities

Jensen’s inequality: if φ is a convex function, then

φ(IE(X)) ≤ IE(φ(X)).

For X ≥ 0,

IE(X) =
∫ ∞
0

Pr(X ≥ t)dt.

Markov’s inequality: if X ≥ 0, then

Pr(X ≥ t) ≤ IE(X)

t
,

where t ≥ 0.



Useful Probability Inequalities

Chebyshev’s inequality (second moment): if X is arbitrary

random variable and t > 0,

Pr(|X − IE(X)| ≥ t) ≤ var(X)

t2
.

Cauchy-Schwarz inequality: if IE(X2) and IE(Y 2) are finite,

then

|IE(XY )| ≤
√

IE(X2)IE(Y 2).



Useful Probability Inequalities

If X is a sum of independent variables, then X is better

approximated by IE(X) than predicted by Chebyshev’s in-

equality. In fact, it’s exponentially close!

Hoeffding’s inequality:

Let X1, ..., Xn be independent bounded random variables,

ai ≤ Xi ≤ bi for any i ∈ 1...n. Let Sn =
∑n

i=1 Xi, then for

any t > 0,

Pr(|Sn − IE(Sn)| ≥ t) ≤ 2exp

( −2t2
∑n

i=1(bi − ai)2

)



Remark about sup

Note that the statement

with prob. at least 1− δ , ∀f ∈ F , |IEf − 1

n

n∑

i=1

f(zi)| ≤ ε

is different from the statement

∀f ∈ F , with prob. at least 1− δ , |IEf − 1

n

n∑

i=1

f(zi)| ≤ ε.

The second statement is an instance of CLT, while the first

statement is more complicated to prove and only holds for

some certain function classes.



Playing with Expectations

Fix a function f , loss V , and dataset S = {z1, ..., zn}. The

empirical loss of f on this data is IS[f ] = 1
n

∑n
i=1 V (f, zi).

The expected error of f is I[f ] = IEzV (f, z). What is the

expected empirical error with respect to a draw of a set S

of size n?

IESIS[f ] =
1

n

n∑

i=1

IESV (f, zi) = IESV (f, z1)


