
Math Camp 1: Functional analysis



About the primer

Goal To briefly review concepts in functional analysis that

will be used throughout the course.∗ The following

concepts will be described

1. Function spaces

2. Metric spaces

3. Dense subsets

4. Linear spaces

5. Linear functionals

∗The definitions and concepts come primarily from “Introductory Real
Analysis” by Kolmogorov and Fomin (highly recommended).



6. Norms and semi-norms of linear spaces

7. Euclidean spaces

8. Orthogonality and bases

9. Separable spaces

10. Complete metric spaces

11. Hilbert spaces

12. Riesz representation theorem

13. Convex functions

14. Lagrange multipliers



Function space

A function space is a space made of functions. Each

function in the space can be thought of as a point. Ex-

amples:

1. C[a, b], the set of all real-valued continuous functions

in the interval [a, b];

2. L1[a, b], the set of all real-valued functions whose ab-

solute value is integrable in the interval [a, b];

3. L2[a, b], the set of all real-valued functions square inte-

grable in the interval [a, b]

Note that the functions in 2 and 3 are not necessarily

continuous!



Metric space

By a metric space is meant a pair (X, ρ) consisting of a

space X and a distance ρ, a single-valued, nonnegative,

real function ρ(x, y) defined for all x, y ∈ X which has the

following three properties:

1. ρ(x, y) = 0 iff x = y;

2. ρ(x, y) = ρ(y, x);

3. Triangle inequality: ρ(x, z) ≤ ρ(x, y) + ρ(y, z)



Examples

1. The set of all real numbers with distance

ρ(x, y) = |x − y|

is the metric space IR1.

2. The set of all ordered n-tuples

x = (x1, ..., xn)

of real numbers with distance

ρ(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2

is the metric space IRn.



3. The set of all functions satisfying the criteria
∫

f2(x)dx < ∞

with distance

ρ(f1(x), f2(x)) =

√

∫

(f1(x) − f2(x))
2dx

is the metric space L2(IR).

4. The set of all probability densities with Kullback-Leibler

divergence

ρ(p1(x), p2(x)) =
∫

ln
p1(x)

p2(x)
p1(x)dx

is not a metric space. The divergence is not symmetric

ρ(p1(x), p2(x)) 6= ρ(p2(x), p1(x)).



Dense

A point x ∈ IR is called a contact point of a set A ∈ IR if

every ball centered at x contains at least one point of A.

The set of all contact points of a set A denoted by Ā is

called the closure of A.

Let A and B be subspaces of a metric space IR. A is said

to be dense in B if B ⊂ Ā. In particular A is said to be

everywhere dense in IR if Ā = R.



Examples

1. The set of all rational points is dense in the real line.

2. The set of all polynomials with rational coefficients is

dense in C[a, b].

3. The RKHS induced by the gaussian kernel on [a, b] in

dense in L2[a, b]

Note: A hypothesis space that is dense in L2 is a desired

property of any approximation scheme.



Linear space

A set L of elements x, y, z, ... is a linear space if the fol-

lowing three axioms are satisfied:

1. Any two elements x, y ∈ L uniquely determine a third

element in x + y ∈ L called the sum of x and y such

that

(a) x + y = y + x (commutativity)

(b) (x + y) + z = x + (y + z) (associativity)

(c) An element 0 ∈ L exists for which x + 0 = x for all

x ∈ L

(d) For every x ∈ L there exists an element −x ∈ L

with the property x + (−x) = 0



2. Any number α and any element x ∈ L uniquely deter-

mine an element αx ∈ L called the product such that

(a) α(βx) = β(αx)

(b) 1x = x

3. Addition and multiplication follow two distributive laws

(a)(α + β)x = αx + βx

(b)α(x + y) = αx + αy



Linear functional

A functional, F, is a function that maps another function

to a real-value

F : f → IR.

A linear functional defined on a linear space L, satisfies the

following two properties

1. Additive: F(f + g) = F(f) + F(g) for all f, g ∈ L

2. Homogeneous: F(αf) = αF(f)



Examples

1. Let IRn be a real n-space with elements x = (x1, ..., xn),

and a = (a1, ..., an) be a fixed element in IRn. Then

F(x) =
n
∑

i=1

aixi

is a linear functional

2. The integral

F[f(x)] =
∫ b

a
f(x)p(x)dx

is a linear functional

3. Evaluation functional: another linear functional is the



Dirac delta function

δt[f(·)] = f(t).

Which can be written

δt[f(·)] =
∫ b

a
f(x)δ(x − t)dx.

4. Evaluation functional: a positive definite kernel in a

RKHS

Ft[f(·)] = (Kt, f) = f(t).

This is simply the reproducing property of the RKHS.



Normed space

A normed space is a linear (vector) space N in which a

norm is defined. A nonnegative function ‖ · ‖ is a norm iff

∀f, g ∈ N and α ∈ IR

1. ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0;

2. ‖f + g‖ ≤ ‖f‖ + ‖g‖;

3. ‖αf‖ = |α| ‖f‖.

Note, if all conditions are satisfied except ‖f‖ = 0 iff f = 0

then the space has a seminorm instead of a norm.



Measuring distances in a normed space

In a normed space N , the distance ρ between f and g, or

a metric, can be defined as

ρ(f, g) = ‖g − f‖.

Note that ∀f, g, h ∈ N

1. ρ(f, g) = 0 iff f = g.

2. ρ(f, g) = ρ(g, f).

3. ρ(f, h) ≤ ρ(f, g) + ρ(g, h).



Example: continuous functions

A norm in C[a, b] can be established by defining

‖f‖ = max
a≤t≤b

|f(t)|.

The distance between two functions is then measured as

ρ(f, g) = max
a≤t≤b

|g(t) − f(t)|.

With this metric, C[a, b] is denoted as C.



Examples (cont.)

A norm in L1[a, b] can be established by defining

‖f‖ =
∫ b

a
|f(t)|dt.

The distance between two functions is then measured as

ρ(f, g) =
∫ b

a
|g(t) − f(t)|dt.

With this metric, L1[a, b] is denoted as L1.



Examples (cont.)

A norm in C2[a, b] and L2[a, b] can be established by defining

‖f‖ =

(

∫ b

a
f2(t)dt

)1/2

.

The distance between two functions now becomes

ρ(f, g) =

(

∫ b

a
(g(t) − f(t))2dt

)1/2

.

With this metric, C2[a, b] and L2[a, b] are denoted as C2

and L2 respectively.



Euclidean space

A Euclidean space is a linear (vector) space E in which a

dot product is defined. A real valued function (·, ·) is a dot

product iff ∀f, g, h ∈ E and α ∈ IR

1. (f, g) = (g, f);

2. (f + g, h) = (f, h∗) + (g, h) and (αf, g) = α(f, g);

3. (f, f) ≥ 0 and (f, f) = 0 iff f = 0.

A Euclidean space becomes a normed linear space when

equipped with the norm

‖f‖ =
√

(f, f).



Orthogonal systems and bases

A set of nonzero vectors {xα} in a Euclidean space E is

said to be an orthogonal system if

(xα, xβ) = 0 for α 6= β

and an orthonormal system if

(xα, xβ) = 0 for α 6= β

(xα, xβ) = 1 for α = β.

An orthogonal system {xα} is called an orthogonal basis

if it is complete (the smallest closed subspace containing

{xα} is the whole space E). A complete orthonormal sys-

tem is called an orthonormal basis.



Examples

1. IRn is a real n-space, the set of n-tuples x = (x1, ..., xn),

y = (y1, ..., yn). If we define the dot product as

(x, y) =
n
∑

i=1

xiyi

we get Euclidean n-space. The corresponding norms

and distances in IRn are

‖x‖ =

√

√

√

√

n
∑

i=1

x2
i

ρ(x, y) = ‖x − y‖ =

√

√

√

√

n
∑

i=1

(xi − yi)
2.



The vectors

e1 = (1,0,0, ....,0)

e2 = (0,1,0, ....,0)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

en = (0,0,0, ....,1)

form an orthonormal basis in IRn.

2. The space l2 with elements x = (x1, x2, ..., xn, ....), y =

(y1, y2, ..., yn, ....), ..., where

∞
∑

i=1

x2
i < ∞,

∞
∑

i=1

y2
i < ∞, ..., ...,

becomes an infinite-dimensional Euclidean space when

equipped with the dot product

(x, y) =
∞
∑

i=1

xiyi.



The simplest orthonormal basis in l2 consists of vectors

e1 = (1,0,0,0, ...)

e2 = (0,1,0,0, ...)

e3 = (0,0,1,0, ...)

e4 = (0,0,0,1, ...)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

there are an infinite number of these bases.

3. The space C2[a, b] consisting of all continuous functions

on [a, b] equipped with the dot product

(f, g) =
∫ b

a
f(t)g(t)dt

is another example of Euclidean space.



An important example of orthogonal bases in this space

is the following set of functions

1, cos
2πnt

b − a
, sin

2πnt

b − a
(n = 1,2, ...).



Cauchy-Schwartz inequality

Let H be an Euclidean space. Then ∀f, g ∈ H, it holds

|(f, g)| ≤ ‖f‖ ‖g‖

Sketch of the proof. The case f ∝ g is trivial, hence let

us assume the opposite is true. For all x ∈ IR,

0 < (f + xg, f + xg) = x2 ‖g‖2 + 2x (f, g) + ‖f‖2,

since the quadratic polynomial of x above has no zeroes,

the discriminant ∆ must be negative

0 > ∆/4 = (f, g)2 − ‖f‖2 ‖g‖2.



Separable

A metric space is said to be separable if it has a countable

everywhere dense subset.

Examples:

1. The spaces IR1, IRn, L2[a, b], and C[a, b] are all separa-

ble.

2. The set of real numbers is separable since the set of

rational numbers is a countable subset of the reals and

the set of rationals is is everywhere dense.



Completeness

A sequence of functions fn is fundamental if ∀ε > 0 ∃Nε

such that

∀n and m > Nε, ρ(fn, fm) < ε.

A metric space is complete if all fundamental sequences

converge to a point in the space.

C, L1, and L2 are complete. That C2 is not complete,

instead, can be seen through a counterexample.



Incompleteness of C2

Consider the sequence of functions (n = 1,2, ...)

φn(t) =











−1 if − 1 ≤ t < −1/n
nt if − 1/n ≤ t < 1/n
1 if 1/n ≤ t ≤ 1

and assume that φn converges to a continuous function φ

in the metric of C2. Let

f(t) =

{

−1 if − 1 ≤ t < 0
1 if 0 ≤ t ≤ 1



Incompleteness of C2 (cont.)

Clearly,
(
∫

(f(t) − φ(t))2dt

)1/2

≤

(
∫

(f(t) − φn(t))
2dt

)1/2

+

(
∫

(φn(t) − φ(t))2dt

)1/2

.

Now the l.h.s. term is strictly positive, because f(t) is not

continuous, while for n → ∞ we have
∫

(f(t) − φn(t))
2dt → 0.

Therefore, contrary to what assumed, φn cannot converge

to φ in the metric of C2.



Completion of a metric space

Given a metric space IR with closure ĪR, a complete metric

space IR∗ is called a completion of IR if IR ⊂ IR∗ and

ĪR = IR∗.

Examples

1. The space of real numbers is the completion of the

space of rational numbers.

2. L2 is the completion of the functional space C2.



Hilbert space

A Hilbert space is a Euclidean space that is complete,
separable, and generally infinite-dimensional.

A Hilbert space is a set H of elements f, g, ... for which

1. H is a Euclidean space equipped with a scalar product

2. H is complete with respect to metric ρ(f, g) = ‖f − g‖

3. H is separable (contains a countable everywhere dense
subset)

4. (generally) H is infinite-dimensional.

l2 and L2 are examples of Hilbert spaces.



Evaluation functionals

A linear evaluation functional is a linear functional Ft that

evaluates each function in the space at the point t, or

Ft[f ] = f(t)

Ft[f + g] = f(t) + g(t).

The functional is bounded if there exists a M s.t.

|Ft[f ]| = |f(t)| ≤ M‖f‖Hil ∀t

for all f where ‖ · ‖Hil is the norm in the Hilbert space.



Evaluation functionals in Hilbert space

The evaluation functional is not bounded in the familiar

Hilbert space L2([0,1]), no such M exists and in fact ele-

ments of L2([0,1]) are not even defined pointwise.
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Evaluation functionals in Hilbert space

In the following pictures the two functions have the same

norm but they are very different on sets of zero measure
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Riesz Representation Theorem

For every bounded linear functional F on a Hilbert space

H, there is a unique v ∈ H such that

F[x] = (x, v)H, ∀x ∈ H



Convex sets

A set X ∈ IRn is convex if

∀x1, x2 ∈ X, ∀λ ∈ [0,1], λx1 + (1 − λ)x2 ∈ X.

A set is convex if, given any two points in the set, the line

segment connecting them lies entirely inside the set.



Convex and Non-convex sets

Convex Sets Non-Convex Sets



Convex Functions

A function f : IRn → IR is convex if:

For any x1 and x2 in the domain of f , for any λ ∈ [0,1],

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

A function is strictly convex if we replace “≤” with “<”.



A Strictly Convex Function
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A Convex Function
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A Non-Convex Function
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Why We Like Convex Functions

Unconstrained convex functions (convex functions where

the domain is all of IRn) are easy to minimize. Convex

functions are differentiable almost everywhere. Directional

derivatives always exist. If we cannot improve our solution

by moving locally, we are at the optimum. If we cannot

find a direction that improves our solution, we are at the

optimum.



Why We Like Convex Sets

Convex functions over convex sets (a convex domain) are

also easy to minimize. If the set and the functions are both

convex, if we cannot find a direction which we are able to

move in which decreases the function, we are done. Local

optima are global optima.



Optimizing a Convex Function Over a
Convex and a Non-Convex Set

f(x,y) = -x + -y

Global Optima

Local Optimum



Existence and uniqueness of minimum

Let f : IRn → IR be a strictly convex function.

The function f is said to be coercive if

lim
‖x‖→+∞

f(x) = +∞.

Strictly convex and coercive functions have exactly one

local (global) minimum.



Local condition on the minimum

If the convex function f is differentiable, its gradient ∇f is

null on the minimum x0.

Even if the gradient does not exist, the subgradient ∂f

always exists.

The subgradient of f in x is defined by

∂f(x) = {w ∈ IRn|∀x′ ∈ IRn, f(x′) ≥ f(x) + w · (x′ − x)},

On the minimum x0, it holds

0 ∈ ∂f(x0),



Lagrange multiplier’s technique

Lagrange multiplier’s technique allows the reduction of the

constrained minimization problem

Minimize I(x)
subject to Φ(x) ≤ m (for some m)

to the unconstrained minimization problem

Minimize J(x) = I(x) + λΦ(x) (for some λ ≥ 0)



Geometric intuition

The fact that ∇I does not vanish in the interior of the

domain implies that the constrained minimum x̄ must lie

on the domain’s boundary (the level curve Φ(x) = m).

Therefore, at the point x̄ the component of ∇I along the

tangent to the curve Φ = m vanishes.

But since the tangent to Φ = m is orthogonal to ∇Φ, we

have that at the point x̄, ∇Φ and ∇I are parallel, or

∇I(x̄) ∝ ∇Φ(x̄).



Geometric intuition (Cont)

We thus introduce a parameter λ ≥ 0, called Lagrange

multiplier, and consider the problem of finding the uncon-

strained minimum xλ of

J(x) = I(x) + λΦ(x)

as a function of λ.

By setting ∇J = 0, we actually look for the points where

∇I and ∇Φ are parallel. The idea is to find all such points

and then check which of them lie on the curve Φ = m.


