#### **Active Learning**

#### 9.520 Class 22, 03 May 2006 Claire Monteleoni MIT CSAIL

# Outline

Motivation

- Historical framework: query learning
- Current framework: selective sampling
- Some recent results
- Open problems

#### Active learning motivation

#### Machine learning applications, e.g.

- Medical diagnosis
- Document/webpage classification
- Speech recognition

Unlabeled data is abundant, but labels are expensive.

#### Active learning is a useful model here. Allows for intelligent choices of which examples to label.

Label-complexity: the number of labeled examples required to learn via active learning

 $\rightarrow$  can be much lower than the PAC sample complexity!

# Supervised learning

Given access to labeled data (drawn iid from an unknown underlying distribution P), want to learn a classifier chosen from hypothesis class H, with misclassification rate  $< \varepsilon$ .



Sample complexity characterized by d = VC dimension of H. If data is *separable*, need roughly  $d/\epsilon$  labeled samples.

Slide credit: Sanjoy Dasgupta

# Active learning

In many situations unlabeled data is easy to come by, but there is a charge for each label.



What is the minimum number of labels needed to achieve the target error rate?

# Active learning variants

There are several models of active learning:

- Query learning (a.k.a. Membership queries)
- Selective sampling
- Active model selection
- Experiment design
- Various evaluation frameworks:
  - **Regret minimization**
  - Minimize label-complexity to reach fixed error rate
  - Label-efficiency (fixed label budget)

We focus on classification, though regression AL exists too.

# Membership queries

Earliest model of active learning in theory work [Angluin 1992]

 $\begin{array}{l} X = \text{space of possible inputs, like } \{0,1\}^n \\ H = \text{class of hypotheses} \end{array} \end{array}$ 

Target concept  $h^* \in H$  to be identified *exactly*. You can ask for the label of any point in X: *no unlabeled data*.

$$\begin{array}{l} H_0 = H \\ \text{For } t = 1,2, \dots \\ \text{pick a point } x \in X \text{ and query its label } h^*(x) \\ \text{let } H_t = \text{all hypotheses in } H_{t-1} \text{ consistent with } (x, h^*(x)) \end{array}$$

What is the minimum number of "membership queries" needed to reduce H to just {h<sup>\*</sup>}?

# Membership queries: example

- $X = \{0,1\}^n$
- H = AND-of-positive-literals, like  $x_1 \land x_3 \land x_{10}$
- S = { } (set of AND positions)
- For i = 1 to n:

ask for the label of (1, ..., 1, 0, 1, ..., 1) [0 at position i] if negative: S = S  $\cup$  {i}

Total: n queries

General idea: synthesize highly informative points. Each query cuts the *version space* -- the set of consistent hypotheses -- in half.

## Problem

Many results in this framework, even for complicated hypothesis classes.

[Baum and Lang, 1991] tried fitting a neural net to handwritten characters. Synthetic instances created were incomprehensible to humans!

[Lewis and Gale, 1992] tried training text classifiers. "an artificial text created by a learning algorithm is unlikely to be a legitimate natural language expression, and probably would be uninterpretable by a human teacher."

## Selective sampling [Cohn, Atlas & Ladner, 1992]

#### Selective sampling:

Given: pool (or stream) of unlabeled examples, *x*, drawn i.i.d. from input distribution.

Learner may request labels on examples in the pool/stream.

(Noiseless) oracle access to correct labels, y.

Constant cost per label

The error of any classifier h is measured on distribution P:  $err(h) = P(h(x) \neq y)$ 

Goal: minimize label-complexity to learn the concept to a fixed accuracy.

# Can adaptive querying really help?

$$\label{eq:calibration} \begin{split} & [CAL92,\,D04] \text{: Threshold functions on the real line} \\ & h_w(x) = \mathbf{1}(x \ge w), \quad H = \{h_w \text{: } w \in R\} \end{split}$$



Binary search – need just log 1/ɛ labels, from which the rest can be inferred! Exponential improvement in sample complexity. Slide credit: S. Dasgupta

# More general hypothesis classes

For a general hypothesis class with VC dimension d, is a "generalized binary search" possible?

Random choice of queries Perfect binary search

d/ε labelsd log 1/ε labels

Where in this large range does the label complexity of active learning lie?

We've already handled linear separators in 1-d...

# [1] Uncertainty sampling

Maintain a single hypothesis, based on labels seen so far. Query the point about which this hypothesis is most "uncertain".

Problem: confidence of a single hypothesis may not accurately represent the true diversity of opinion in the hypothesis class.



Slide credit: S. Dasgupta

# [2] Region of uncertainty

Current version space: portion of H consistent with labels so far. "Region of uncertainty" = part of data space about which there is still some uncertainty (ie. disagreement within version space)

Suppose data lies on circle in R<sup>2</sup>; hypotheses are linear separators.

(spaces X, H superimposed)



# [2] Region of uncertainty

Algorithm [CAL92]: of the unlabeled points which lie in the region of uncertainty, pick one at random to query.

Data and hypothesis spaces, superimposed:

(both are the surface of the unit sphere in R<sup>d</sup>)



# [2] Region of uncertainty

Number of labels needed depends on H and also on P.

Special case:  $H = \{\text{linear separators in } R^d\}, P = \text{uniform distribution over unit sphere.}$ 

Theorem [Balcan, Beygelzimer & Langford ICML '06]:  $\tilde{O}(d^2 \log 1/\epsilon)$  labels are needed to reach a hypothesis with error rate <  $\epsilon$ .

Supervised learning:  $\Theta(d/\epsilon)$  labels.

[Seung, Opper, Sompolinsky, 1992; Freund, Seung, Shamir, Tishby 1997]

First idea: Try to rapidly reduce volume of version space? Problem: doesn't take data distribution into account.



Which pair of hypotheses is closest? Depends on data distribution P. Distance measure on H:  $d(h,h') = P(h(x) \neq h'(x))$ 

First idea: Try to rapidly reduce volume of version space?

Problem: doesn't take data distribution into account.

To keep things simple, say d(h,h')  $\propto$  Euclidean distance in this picture.

H:

Error is likely to remain large!

Elegant scheme which decreases volume in a manner which is sensitive to the data distribution.

Bayesian setting: given a prior  $\pi$  on H

 $\begin{array}{l} H_1 = H \\ For \ t = 1, 2, \\ receive \ an \ unlabeled \ point \ x_t \ drawn \ from \ P \\ [informally: \ is \ there \ a \ lot \ of \ disagreement \ about \ x_t \ in \ H_t?] \\ choose \ two \ hypotheses \ h,h' \ randomly \ from \ (\pi, \ H_t) \\ if \ h(x_t) \neq h'(x_t): \ ask \ for \ x_t's \ label \\ set \ H_{t+1} \end{array}$ 

For t = 1, 2, ...

receive an unlabeled point  $x_t$  drawn from P choose two hypotheses h,h' randomly from  $(\pi, H_t)$ if  $h(x_t) \neq h'(x_t)$ : ask for  $x_t$ 's label set  $H_{t+1}$ 

Observation: the probability of getting pair (h,h') in the inner loop (when a query is made) is proportional to  $\pi(h) \pi(h') d(h,h')$ .



Label bound, Theorem [FSST97] : For H = {linear separators in R<sup>d</sup>}, P = uniform distribution, then  $\tilde{O}(d \log 1/\epsilon)$  labels to reach a hypothesis with error <  $\epsilon$ .

Implementation: need to randomly pick h according to  $(\pi, H_t)$ .

e.g. H = {linear separators in  $\mathbb{R}^d$ },  $\pi$  = uniform distribution:



# **Online active learning**

- Under Bayesian assumptions, QBC can learn a half-space through the origin to generalization error  $\epsilon$ , using  $\tilde{O}(d \log 1/\epsilon)$  labels.
- → But not online: space required, and time complexity of the update both scale with number of seen mistakes!

- Online algorithms:
  - See unlabeled data streaming by, one point at a time
  - Can query current point's label, at a cost
  - Can only maintain current hypothesis (memory bound)

## Online learning: related work

- Standard (supervised) Perceptron: a simple online algorithm:
  - If  $y_t \neq SGN(v_t \cdot x_t)$ , then:Filtering rule $v_{t+1} = v_t + y_t x_t$ Update step

Distribution-free mistake bound O(1/ $\gamma^2$ ), if exists margin  $\gamma$ .

Theorem [Baum'89]: Perceptron, given sequential labeled examples from the uniform distribution, can converge to generalization error  $\varepsilon$  after  $\tilde{O}(d/\epsilon^2)$  mistakes.

# Fast online active learning [Dasgupta, Kalai & M, COLT '05]

A lower bound for Perceptron in active learning context of  $\Omega(1/\epsilon^2)$  labels.

A modified Perceptron update with a  $\tilde{O}(d \log 1/\epsilon)$  mistake bound.

An active learning rule and a label bound of  $\tilde{O}(d \log 1/\epsilon)$ .

A bound of  $\tilde{O}(d \log 1/\epsilon)$  on total errors (labeled or not).

# Selective sampling, online constraints

Sequential selective sampling framework: Unlabeled examples, x<sub>t</sub>, are received one at a time, sampled i.i.d. from the input distribution. Learner makes a prediction at each time-step. A noiseless oracle to label y<sub>t</sub>, can be queried at a cost.

Goal: minimize number of *labels* to reach error  $\varepsilon$ .  $\varepsilon$  is the error rate (w.r.t. the target) on the input distribution.

#### **Online constraints:**

Space: Learner cannot store all previously seen examples (and then perform batch learning).

Time: Running time of learner's belief update step should not scale with number of seen examples/mistakes.

### AC Milan vs. Inter Milan







## Problem framework

 $S = \left\{ x \in \mathbb{R}^d \mid \|x\| = 1 \right\}, \ x_t \in S, \ y_t \in \{-1, +1\}$ 

Target:  $u : y_t(u \cdot x_t) > 0 \quad \forall t, \ ||u|| = 1$ 

Current hypothesis:  $v_t$ 

$$egin{aligned} & heta_t = rccos(u \cdot \hat{v}_t) \; : \; \hat{v}_t = rac{v_t}{\|v_t\|} \ & ext{Error region: } \boldsymbol{\xi}_t \end{aligned}$$

Assumptions:

Separability

u is through origin

x~Uniform on S

error rate:  $\epsilon_t = P_{x \in S}[x \in \xi_t] = \frac{\theta_t}{\pi}$ 



# OPT

- Fact: Under this framework, any algorithm requires  $\Omega(d \log 1/\epsilon)$  labels to output a hypothesis within generalization error at most  $\epsilon$ .
- Proof idea: Can pack  $(1/\epsilon)^d$  spherical caps of radius  $\epsilon$  on surface of unit ball in  $\mathbb{R}^d$ . The bound is just the number of bits to write the answer.



#### Perceptron

Perceptron update:  $v_{t+1} = v_t + y_t x_t$ 

 $\rightarrow$  error does not decrease monotonically.



# Lower bound on labels for Perceptron

Theorem [DKM05]: The Perceptron algorithm, using any active learning rule, requires  $\Omega(1/\epsilon^2)$  labels to reach generalization error  $\epsilon$  w.r.t. the uniform distribution.

Proof idea: Lemma: For small  $\theta_t$ , the Perceptron update will increase  $\theta_t$  unless  $\|v_t\|$ 

### A modified Perceptron update

Standard Perceptron update:

 $\mathbf{v}_{t+1} = \mathbf{v}_t + \mathbf{y}_t \mathbf{x}_t$ 

Instead, weight the update by "confidence" w.r.t. current hypothesis  $v_t$ :  $v_{t+1} = v_t + 2 y_t |v_t \cdot x_t| x_t$   $(v_1 = y_0 x_0)$ 

(similar to update in [Blum et al.'96] for noise-tolerant learning)

Unlike Perceptron:

Error decreases monotonically:

$$\cos(\theta_{t+1}) = \mathbf{u} \cdot \mathbf{v}_{t+1} = \mathbf{u} \cdot \mathbf{v}_t + 2 |\mathbf{v}_t \cdot \mathbf{x}_t| |\mathbf{u} \cdot \mathbf{x}_t|$$
$$\geq \mathbf{u} \cdot \mathbf{v}_t = \cos(\theta_t)$$

 $\|\mathbf{v}_t\| = 1$  (due to factor of 2)

#### A modified Perceptron update

Perceptron update:  $v_{t+1} = v_t + y_t x_t$ 

Modified Perceptron update:  $v_{t+1} = v_t + 2 y_t |v_t \cdot x_t| x_t$ 



### Mistake bound

Theorem [DKM05]: In the supervised setting, the modified Perceptron converges to generalization error  $\varepsilon$  after  $\tilde{O}(d \log 1/\varepsilon)$  mistakes.

**Proof idea:** The exponential convergence follows from a multiplicative decrease in  $\theta_t$ :

$$1 - \cos \theta_{t+1} \le (1 - \frac{c}{d})(1 - \cos \theta_t)$$

On an update,  $\begin{array}{ll} \cos \theta_{t+1} &=& u \cdot v_{t+1} = u \cdot v_t + 2y_t |v_t \cdot x_t| (u \cdot x_t) \\ &=& u \cdot v_t + 2|v_t \cdot x_t| |u \cdot x_t| \\ &=& \cos \theta_t + 2|v_t \cdot x_t| |u \cdot x_t| \end{array}$ 

 $\rightarrow$  Lower bound  $2|v_t \cdot x_t||u \cdot x_t|$ , with high probability, using distributional assumption.

### Mistake bound

Theorem 2: In the supervised setting, the modified Perceptron converges to generalization error  $\epsilon$  after  $\tilde{O}(d \log 1/\epsilon)$  mistakes.

Lemma (band): For any fixed a: ||a||=1,  $\gamma \leq 1$  and for x~U on S:

# Active learning rule

Goal: Filter to label just those points in the error region.  $\rightarrow$  but  $\theta_t$ , and thus  $\xi_t$  unknown!

Define labeling region: 
$$\mathbb{L} = \left\{ x \mid |v_t \cdot x| \leq s_t \right\}$$

Tradeoff in choosing threshold s<sub>t</sub>: If too high, may wait too long for an error. If too low, resulting update is too small.

$$\mathbb{L} = \left\{ x \ \left| \ |v_t \cdot x| \le \frac{\sin \theta_t}{\sqrt{d}} \right. \right\} \text{ makes}$$

$$P_{x\in S}\left[x\in\mathbb{L}\mid x\in\xi_t\right]$$
 constant.

 $\rightarrow$  But  $\theta_t$  unknown!



# Active learning rule

Choose threshold s<sub>t</sub> adaptively:

Start high. Halve, if no error in R consecutive labels.

$$\mathbb{L} = \left\{ x \ \Big| \ |v_t \cdot x| \leq s_t 
ight\}$$

Start with threshold S<sub>t</sub> high:

$$s_1 = \frac{\sin\frac{\pi}{2}}{\sqrt{d}} = \frac{1}{\sqrt{d}}$$

After R consecutive labeled points, if no errors:  $s_{t+1} = \frac{s_t}{2}$ 



### Label bound

Theorem [DKM05]: In the active learning setting, the modified Perceptron, using the adaptive filtering rule, will converge to generalization error  $\varepsilon$  after  $\tilde{O}(d \log 1/\varepsilon)$  labels.

Corollary [DKM05] : The total errors (labeled and unlabeled) will be  $\tilde{O}(d \log 1/\epsilon)$ .

## **Proof technique**

Proof outline: We show the following lemmas hold with sufficient probability:

Lemma 1. s<sub>t</sub> does not decrease too quickly:  $s_t \ge \frac{\sin \theta_t}{4\sqrt{d}}$ 

Lemma 2. We query labels on a constant fraction of  $\xi_t$ .

Lemma 3. With constant probability the update is good.

By algorithm,  $\sim 1/R$  labels are mistakes.  $\exists R = \tilde{O}(1)$ .

 $\Rightarrow$  Can thus bound labels and total errors by mistakes.

# [DKM05] in context

| samples 🥤 mistakes 🥤 labels 🥤 total errors 🥤 online? |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Õ(d/ε)<br>Ω(d/ε)                                     |                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $	ilde{O}(d/ε^3)$<br>$\Omega(1/ε^2)$                 | Õ(d/ε²)<br>Ω(1/ε²)                                                                                                                                                                                                                                             | Ω(1/ε²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Õ((d²/ε)<br>log 1/ε)                                 | Õ(d² log 1/ε)                                                                                                                                                                                                                                                  | Õ(d² log 1/ε)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Õ(d/ε log 1/ε)                                       | Õ(d log 1/ε)                                                                                                                                                                                                                                                   | Õ(d log 1/ε)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Õ(d/ε log 1/ε)                                       | Õ(d log 1/ε)                                                                                                                                                                                                                                                   | Õ(d log 1/ε)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Õ(d log 1/ε)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                      | mples mis<br>$\tilde{O}(d/\epsilon)$<br>$\Omega(d/\epsilon)$<br>$\tilde{O}(d/\epsilon^3)$<br>$\Omega(1/\epsilon^2)$<br>$\tilde{O}((d^2/\epsilon))$<br>$\log 1/\epsilon)$<br>$\tilde{O}(d/\epsilon \log 1/\epsilon)$<br>$\tilde{O}(d/\epsilon \log 1/\epsilon)$ | istakesIa $\tilde{O}(d/\epsilon)$<br>$\Omega(d/\epsilon)$ $\tilde{O}(d/\epsilon^2)$<br>$\Omega(1/\epsilon^2)$ $\tilde{O}(d/\epsilon^3)$<br>$\Omega(1/\epsilon^2)$ $\tilde{O}(d/\epsilon^2)$<br>$\Omega(1/\epsilon^2)$ $\tilde{O}((d^2/\epsilon)$<br>$\log 1/\epsilon)$ $\tilde{O}(d^2 \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ | mistakeslabelstotal of $\tilde{O}(d/\epsilon)$<br>$\Omega(d/\epsilon)$ $\tilde{O}(d/\epsilon^2)$<br>$\Omega(1/\epsilon^2)$ $\tilde{O}(d/\epsilon^2)$<br>$\Omega(1/\epsilon^2)$ $\Omega(1/\epsilon^2)$ $\tilde{O}(d/\epsilon^2/\epsilon)$<br>$\log 1/\epsilon)$ $\tilde{O}(d^2 \log 1/\epsilon)$ $\tilde{O}(d^2 \log 1/\epsilon)$ $\tilde{O}(d^2 \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ | mistakeslabelstotal errorsonlin $\tilde{O}(d/\epsilon)$<br>$\Omega(d/\epsilon)$ $\tilde{O}(d/\epsilon^2)$<br>$\Omega(1/\epsilon^2)$ $\tilde{O}(d/\epsilon^2)$<br>$\Omega(1/\epsilon^2)$ $\Omega(1/\epsilon^2)$ $\tilde{O}(d/\epsilon^2/\epsilon)$<br>$\log 1/\epsilon)$ $\tilde{O}(d^2 \log 1/\epsilon)$ $\tilde{O}(d^2 \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d/\epsilon \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ $\tilde{O}(d \log 1/\epsilon)$ |

# Lower bounds on label complexity

For linear separators in R<sup>1</sup>, need just log  $1/\epsilon$  labels. Theorem [D04]: when H = {non-homogeneous linear separators in R<sup>2</sup>}: some target hypotheses require  $1/\epsilon$  labels to be queried!

Consider *any* distribution over the circle in R<sup>2</sup>.

Need 1/ $\epsilon$  labels to distinguish between  $h_0$ ,  $h_1$ ,  $h_2$ , ...,  $h_{1/\epsilon}$ !

 $\rightarrow$  Leads to analagous bound:  $\Omega(1/\epsilon)$  for homogeneous linear separators in R<sup>d</sup>.



# A fuller picture

For non-homogenous linear separators in R<sup>2</sup>: some bad target hypotheses which require  $1/\epsilon$  labels, but "most" require just O(log  $1/\epsilon$ ) labels...



## A view of the hypothesis space

 $\mathbf{H} = \{\text{non-homogeneous linear separators in } \mathbb{R}^2\}$ 



# Geometry of hypothesis space

H = any hypothesis class, of VC dimension d <  $\infty$ .

**P** = underlying distribution of data.



(i) Non-Bayesian setting: no probability measure on H

(ii) But there is a natural (pseudo) metric:  $d(h,h') = P(h(x) \neq h'(x))$ (iii) Each point x defines a cut through H

## Label upper bounding technique [Dasgupta NIPS'05]



(h<sub>0</sub> = target hypothesis)

Proof technique: analyze how many labels until the diameter of the remaining version space is at most  $\varepsilon$ .

# Searchability index [D05]

Accuracy ε Data distribution P Amount of unlabeled data



Each hypothesis  $h \in H$  has a "searchability index"  $\rho(h)$ 

 $\epsilon \leq \rho(h) \leq 1,$  bigger is better

Example: linear separators in R<sup>2</sup>, data on a circle:



 $\rho(h) \propto min(pos \mbox{ mass of } h, \mbox{ neg mass of } h), \mbox{ but never } < \epsilon$  Slide credit: S. Dasgupta

# Searchability index [D05]

Accuracy ε Data distribution P Amount of unlabeled data

Each hypothesis  $h\in H$  has a "searchability index"  $\rho(h)$ 

Searchability index lies in the range:  $\epsilon \leq \rho(h) \leq 1$ 

**Upper bound.** For any H of VC-dim d< $\infty$ , there is an active learning scheme<sup>\*</sup> which identifies (within accuracy  $\leq \varepsilon$ ) any

 $h \in H$ , with a label complexity of at most:  $\frac{1}{\rho(h)} \cdot \tilde{O}\left(d \log \frac{1}{\epsilon}\right)$ 

**Lower bound**. For any  $h \in H$ , any active learning scheme for the neighborhood B(h,  $\rho(h)$ ) has a label complexity of at least:  $\frac{1}{\rho(h)}$ [When  $\rho(h) \gg \epsilon$ : active learning helps a lot.] Slide credit: S. Dasgupta

### Example: the 1-d line

Searchability index lies in range: 
$$\varepsilon \le \rho(h) \le 1$$
  
Theorem [D05]:  $\frac{1}{\rho(h)} \le \#$  labels needed  $\le \frac{1}{\rho(h)} \cdot \tilde{O}\left(d\log\frac{1}{\epsilon}\right)$ 

#### Example: Threshold functions on the line



**Result:**  $\rho = 1/2$  for any target hypothesis and any input distribution

# Open problem: efficient, general AL

[M, COLT Open Problem '06]: Efficient algorithms for active learning under general input distributions, D. → Current UB's for general distributions are based on intractable schemes!

Provide an algorithm such that w.h.p.:

- 1. After *L* label queries, algorithm's hypothesis *v* obeys:  $P_{x \sim D}[v(x) \neq u(x)] \leq \varepsilon.$
- 2. *L* is at most the PAC sample complexity, and for a general class of input distributions, *L* is significantly lower.
- 3. Total running time is at most  $poly(d, 1/\epsilon)$ .

Specific variant: homogeneous linear separators, realizable case, D known to learner.

# Open problem: efficient, general AL

[M, COLT Open Problem '06]: Efficient algorithms for active learning under general input distributions, *D*.

Other open variants:

Input distribution, *D*, is unknown to learner.

Agnostic case, certain scenarios ([Kääriäinen, NIPS Foundations of Active Learning workshop '05]: negative result for general agnostic setting).

Add the online constraint: memory and time complexity (of the online update) must not scale with number of seen labels or mistakes.

Same goal, other concept classes, or a general concept learner.

# Other open problems

Extensions to DKM05:

Relax distributional assumptions.

Uniform is sufficient but not necessary for proof.

Relax realizable assumption.

Analyze margin version

for exponential convergence, without d dependence.

Testing issue: Testing the final hypothesis takes  $1/\epsilon$  labels!  $\rightarrow$  Is testing an inherent part of active learning?

Cost-sensitive labels

Bridging theory and practice. How to benchmark AL algorithms?

# Thank you!