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Supervised Ranking Problems
• Preference Modeling: 

– Given a set of possible product configurations x1, x2,…xd predict 
the most preferred one; predict the rating

• Information Retrieval: 
– Given a query q, and set of candidate matches x1, x2,…xd predict 

the best answer
• Information Extraction:

– Given a set of possible part of speech tagging choices, x1, 
x2,…xd predict the most correct tag boundaries

• E.g “The_day_they_shot_John_Lennon/WE at the 
Dogherty_Arts_Center/WE”

• Multiclass classification:
– Given a set of possible class labels y1, y2,…yd and confindense

scores c1, c2,…cd, predict the correct label



Types of information available

• Preference modeling:
– Metric based:

• User rated configuration xi with yi=U (xi)

– Choice based:
• Given choices x1, x2,…xd, the user chose xf

– Prior information about the features:
• Cheaper is better
• Faster is better
• etc



Types of information available

• Information Retrieval:
– Metric based:

• Users clicked on link xi with a frequency yi=U (xi)

– Choice based:
• Given choices x1, x2,…xd, the user clicked on xf

– Prior information about the features:
• Keyword matches (the more the better)
• Unsupervised similarity scores (TFIDF)
• etc



Types of information available

• Information Extraction:
– Choice based:

• Given tagging choices x1, x2,…xd, the hand labeling chose xf

– Prior information about the features:
• Unsupervised scores 

• Multiclass:
– Choice based:

• Given vectors the confidence scores c1, c2,…cd for class labels 
1,2,…d the correct label was yf.. .  The confidence scores may be 
coming from set of weak classifiers, and/or OVA comparisons.

– Prior information about the features:
• The higher the confidence score the more likely to represent the

correct label.



(Semi-)Unsupervised Ranking Problems

• Learn relationships of the form:
– Class A is closer to B, than it is to C

• We are given a set of l labeled comparisons for 
a user, and a set of u seemingly-unrelated 
comparisons from other users.
– How do we incorporate the seemingly-unrelated 

information from the u instances
– How do we measure similarity



Rank Correlation Kendall’s τ
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• P is the number of concordant pairs
• Q is the number of discordant pairs
• Value ranges from -1 for reverse rankings to +1 

for  same rankings.
• 0 implies independence



Example

• P = 5 + 4 + 5 + 4 + 3 + 1 + 0 + 0 = 22
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Minimizing discordant pairs
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Equivalent to 
satisfying all 
constraints:
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Familiar problem
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Regularized Ranking
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Notes: 
V(.) can be any relevant loss function
We could use any binary classifier; RLSC, SVM, Boosted Trees, etc
The framework for classifying vectors of differences is general 
enough to apply to both metric, and choice based problems



Bound on Mean Average Precision

( )

( )

1

1

1

1

1 / 2

1min

n

i i

i

n

i
i

n

i i

i j

iMean AvgPrec
n p

p rank of sorted retrieved itemi
n number of ranked retrieved items

p Q n n

Q number of discordant items
i

n p
subject to p p i j

=

=

=

=

=
=

= + +

=

< ∈ ∀ <

∑

∑

∑

Minimizing Q, works for other IR metrics as well.  
Consider Mean Average Precision:



Bound on Mean Average Precision
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Prior Information

• Ranking problems come with a lot of prior 
knowledge
– Positivity constraints

• For a pairwise comparison, where all attributes are 
equal, except one, the instance with the highest 
(lowest) value is preferred.

– If A is better than B, then B is worse than A



Prior information

Assume linear SVM case:
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Constructing the training set from examples

• Sometimes the comparisons are not explicit:
– Information Retrieval (Learn from clickthrough data)

• “Winning” instances are the ones clicked most often 
• Features are other ranking scores (similarity of query with 

title, or text segments in emphasis etc).  This also implies 
positivity constraints 

– Supervised summarization
• “Winning” words are they ones that show up in the summary
• Features are other content-word predictors (TFIDF score, 

distance from beginning of text, etc). We can again 
incorporate positivity constraints



Semi-unsupervised Ranking
• Learn distance metrics from comparisons of the form:

– A is closer to B, than C

• Examples from WEBKB (Schultz&Joachims):
– Webpages from the same university are closer than ones from 

different schools
– Webpages about the same topic (faculty, student, project, and 

course) are closer than pages from different ones

– Webpages about same topic are close. If from 
different topics, but one of them a student page, and 
one a faculty page, then they are closer than other 
different topic pages.



Learning weighted distances
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Learning distance metrics

55.06%63.08% 79.67% Topic+FacultyStu
dent Distance

55.57%61.82% 75.40% Topic Distance          

80.72%67.88% 98.43% University 
Distance     

TFIDFBinary Learned 

Experiments (Schultz&Joachims)

Note: Schultz&Joachims report that they got the best results with a linear kernel 
where A=I.  They do not regularize the complexity of their weighted distance 
metric (Remember Regularized Manifolds from previous class)



Learning from seemingly-unrelated comparisons
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(Evgeniou&Pontil; Chappelle&Harchaoui )
Given l comparisons from the same user 
and u comparisons from seemingly-unrelated users:



25.258 %22.355 %20.440 %19.589 %18.748 %μ=0.6

22.090 %19.838 %18.676 %17.810 %17.455 %μ=0.5

19.494 %17.812 %17.162 %16.786 %16.581 %μ=0.4

17.055 %16.304 %15.918 %15.602 %15.998 %μ=0.3

15.276 %15.323 %15.157 %15.520 %16.133 %μ=0.2

15.242%15.636 %16.225 %16.508 %17.132 %μ=0.1

18.174 %18.023 %18.043 %17.905 %17.986 %μ=0.01

18.135 %18.140 %18.092 %17.835 %18.182 %μ=0.001

18.036 %18.089 %18.067 %18.135 %17.999 %μ=0.0001

18.164 %18.182%18.217 %18.123 %17.897 %μ=0.00001

18.009 %18.152%17.847 %18.117 %18.268 %μ=0.00000
1

18.430 %18.040%18.380 %18.090 %18.141 %μ=0

u=100u=50u=30u=20u=10

Results of RLSC experiments with l=10 comparisons per 
user, with u instances of seemingly-unrelated comparisons, 
and weight μ on loss contributed by the seemingly-
unrelated data. 



Ranking learning with seemingly-
unrelated data

• More seemingly-unrelated comparisons in the 
training set improve results

• There is no measure of similarity of the 
seemingly-unrelated data (recall 
Schultz&Joachims)



Regularized Manifolds
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Laplacian RLSC:
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Laplacian RLSC for ranking with seemingly-
unrelated data
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This is equivalent to the following minimization:



Laplacian RLSC for ranking with seemingly-
unrelated data
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25.35 %22.38 %20.60 %20.20 %17.74 %μ=0.6

20.60 %19.48 %18.74 %16.64 %17.90 %μ=0.5

20.75 %17.93 %17.94 %16.54 %15.94 %μ=0.4

18.60 %16.57 %16.74 %16.76 %16.22 %μ=0.3

14.30 %14.89 %14.86 %14.68 %14.80 %μ=0.2

16.30 %15.58 %16.04 %16.68 %16.86 %μ=0.1

18.15 %17.70 %17.98 %17.52 %16.92 %μ=0.01

18.00 %17.87 %18.28 %18.12 %17.20 %μ=0.001

17.90 %17.73 %18.02 %18.76 %18.56 %μ=0.0001

18.10 %18.46 %17.54 %18.20 %18.30 %μ=0.00001

20.10 %18.11 %17.52 %19.46 %17.34 %μ=0.000001

17.54%18.20%18.38%18.50%17.50%μ=0

u=100u=50u=30u=20u=10

Results of Laplacian RLSC experiments with l=10
comparisons per user, with u instances of seemingly-
unrelated data, and μ weight on loss contributed by the 
seemingly-unrelated comparisons. 



Observations

• Optimal μ (estimated by CV) gives better 
performance, than without the Manifold setting

• More seemingly-unrelated data, do not affect 
performance significantly

• Seemingly-unrelated examples have impact that 
depends on the manifold transformation:
– The intrinsic penalty term accounts for examples that 

are neighboring on the manifold, and have opposite 
labels.


