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About this class

Goal To analyze the limits of learning from examples in

high dimensional spaces. To introduce the semi-supervised

setting and the use of unlabeled data to learn the in-

trinsic geometry of a problem. To define Riemannian

Manifolds, Manifold Laplacians, Graph Laplacians. To

introduce a new class of algorithms based on Manifold

Regularization (LapRLS, LapSVM).



Unlabeled data

Why using unlabeled data?

• labeling is often an “expensive” process

• semi-supervised learning is the natural setting for hu-

man learning



Semi-supervised setting

u i.i.d. samples drawn on X from the marginal distribution

p(x)

{x1, x2, . . . , xu},

only n of which endowed with labels drawn from the con-

ditional distributions p(y|x)

{y1, y2, . . . , yn}.

The extra u−n unlabeled samples give additional informa-

tion about the marginal distribution p(x).



The importance of unlabeled data



Curse of dimensionality and p(x)

Assume X is the D-dimensional hypercube [0,1]D. The

worst case scenario corresponds to uniform marginal dis-

tribution p(x).

Two perspectives on curse of dimensionality:

• As d increases, local techniques (eg nearest neighbors)

become rapidly ineffective.

• Minimax results show that rates of convergence of em-

pirical estimators to optimal solutions of known smooth-

ness, depend critically on D



Curse of dimensionality and k-NN

• It would seem that with a reasonably large set of train-

ing data, we could always approximate the conditional

expectation by k-nearest-neighbor averaging.

• We should be able to find a fairly large set of observa-

tions close to any x ∈ [0,1]D and average them.

• This approach and our intuition breaks down in high

dimensions.



Sparse sampling in high dimension

Suppose we send out a cubical neighborhood about one

vertex to capture a fraction r of the observations. Since

this corresponds to a fraction r of the unit volume, the

expected edge length will be

eD(r) = r
1
D .

Already in ten dimensions e10(0.01) = 0.63, that is to

capture 1% of the data, we must cover 63% of the range

of each input variable!

No more ”local” neighborhoods!



Distance vs volume in high dimensions
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Curse of dimensionality and smoothness

Assuming that the target function f∗ (in the squared loss

case) belongs to the Sobolev space

W2
s ([0,1]D) = {f ∈ L2([0,1]D)|

∑

ω∈Zd

‖ω‖2s|f̂(ω)|2 < +∞}

it is possible to show that ∗

sup
µ,f∗∈W2

s

IES(I[fS] − I[f∗]) > Cn− s
D

More smoothness s ⇒ faster rate of convergence

Higher dimension D ⇒ slower rate of convergence

∗A Distribution-Free Theory of Nonparametric Regression, Gyorfi



Intrinsic dimensionality

Raw format of natural data is often high dimensional, but

in many cases it is the outcome of some process involving

only few degrees of freedom.

Examples:

• Acoustic Phonetics ⇒ vocal tract can be modelled as a sequence
of few tubes.

• Facial Expressions ⇒ tonus of several facial muscles control facial
expression.

• Pose Variations ⇒ several joint angles control the combined pose
of the elbow-wrist-finger system.

Smoothness assumption: y’s are “smooth” relative to

natural degrees of freedom, not relative to the raw format.



Manifold embedding



Riemannian Manifolds

A d-dimensional manifold

M =
⋃

α

Uα

is a mathematical object that generalized domains in IRd.

Each one of the “patches” Uα which cover M is endowed with a system

of coordinates

α : Uα → IRd.

If two patches Uα and Uβ, overlap, the transition functions

β ◦ α−1 : α(Uα

⋂

Uβ) → IRd

must be smooth (eg. infinitely differentiable).

• The Riemannian Manifold inherits from its local system of co-
ordinates, most geometrical notions available on IRd: metrics,
angles, volumes, etc.



Manifold’s charts



Differentiation over manifolds

Since each point x over M is equipped with a local system

of coordinates in IRd (its tangent space), all differential

operators defined on functions over IRd, can be extended

to analogous operators on functions over M.

Gradient: ∇f(x) = ( ∂
∂x1

f(x), . . . , ∂
∂xd

f(x)) ⇒ ∇Mf(x)

Laplacian: 4f(x) = − ∂2

∂x2
1

f(x) − · · · − ∂2

∂x2
d

f(x) ⇒ 4Mf(x)



Measuring smoothness over M

Given f : M → IR

• ∇Mf(x) represents amplitude and direction of variation

around x

• S(f) =
∫

M ‖∇Mf‖2 is a global measure of smoothness

for f

• Stokes’ theorem (generalization of integration by parts)

links gradient and Laplacian

S(f) =
∫

M
‖∇Mf(x)‖2 =

∫

M
f(x)4Mf(x)



Example: the circle S1

M: circle with angular coordinate θ ∈ [0,2π)

∇Mf =
∂

∂θ
f, 4Mf = −

∂2

∂θ2
f

integration by parts:
∫ 2π
0

(

∂
∂θ

f(θ)
)2

dθ = −
∫ 2π
0 f(θ) ∂2

∂θ2f(θ)dθ

eigensystem of 4M: 4Mφk = λkφk

φk(θ) = sin kθ, cos kθ, λk = k2 k ∈ IN



Manifold regularization ∗

A new class of techniques which extend standard Tikhonov regu-
larization over RKHS, introducing the additional regularizer ‖f‖2

I =
∫

M
f(x)4Mf(x) to enforce smoothness of solutions relative to the un-

derlying manifold

f∗ = argmin
f∈H

1

n

n
∑

i=1

V (f(xi), yi) + λA‖f‖
2
K + λI

∫

M

f4Mf

• λI controls the complexity of the solution in the intrinsic geometry
of M.

• λA controls the complexity of the solution in the ambient space.

∗Belkin, Niyogi, Sindhwani, 04



Manifold regularization (cont.)

Other natural choices of ‖ · ‖2
I exist

• Iterated Laplacians
∫

M
f4s

Mf and their linear combinations. These
smoothness penalties are related to Sobolev spaces

∫

f(x)4s
Mf(x) ≈

∑

ω∈Zd

‖ω‖2s|f̂(ω)|2

• Frobenius norm of the Hessian (the matrix of second derivatives
of f) ∗

• Diffusion regularizers
∫

M
fet4(f). The semigroup of smoothing

operators G = {e−t4M|t > 0} corresponds to the process of diffu-
sion (Brownian motion) on the manifold.

∗Hessian Eigenmaps; Donoho, Grimes 03



Laplacian and diffusion

• If M is compact, the operator 4M has a countable

sequence of eigenvectors φk (with non-negative eigen-

values λk), which is a complete system of L2(M). If M

is connected, the constant function is the only eigen-

vector corresponding to null eigenvalue.

• The function of operator e−t4M, is defined by the

eigensystem (e−tλk, φk), k ∈ IN.

• the diffusion stabilizer ‖f‖2I =
∫

M fet4M(f) is the squared

norm of RKHS with kernel equal to Green’s function

of heat equation

∂T

∂t
= −4MT



Laplacian and diffusion (cont.)

1. By Taylor expansion of T (x, t) around t = 0

T (x, t) = T (x,0) + t
∂

∂t
T (x,0) + · · · +

1

k
tk

∂k

∂tk
T (x,0) + . . .

= e−t4T (x,0) =

∫

Kt(x, x′)T (x′,0)dx′ = LKT (x′,0)

2. For small t > 0, the Green’s function is a sharp gaussian

Kt(x, x′) ≈ e−
‖x−x′‖2

t

3. Recalling relation of integral operator LK and RKHS norm, we get

‖f‖2
I =

∫

f et4(f) =

∫

f L−1
K (f) = ‖f‖2

K



An empirical proxy of the manifold

We cannot compute the intrinsic smoothness penalty

‖f‖2I =
∫

M
f(x)4Mf(x)

because we don’t know the manifold M and the embedding

Φ : M → IRD.

But we assume that the unlabeled samples are drawn

i.i.d. from the uniform probability distribution over M

and then mapped into IRD by Φ



Neighborhood graph

Our proxy of the manifold is a weighted neighborhood

graph G = (V, E, W ), with vertices V given by the points

{x1, x2, . . . , xu}, edges E defined by one of the two follow-

ing adjacency rules

• connect xi to its k nearest neighborhoods

• connect xi to ε-close points

and weights Wij associated to two connected vertices

Wij = e−
‖xi−xj‖

2

ε

Note: computational complexity O(u2)



Neighborhood graph (cont.)



The graph Laplacian

The graph Laplacian over the weighted neighborhood graph

(G, E, W ) is the matrix

Lij = Dii − Wij, Dii =
∑

j

Wij.

L is the discrete counterpart of the manifold Laplacian 4M

fTLf =
n

∑

i,j=1

Wij(fi − fj)
2 ≈

∫

M
‖∇f‖2dp.

Analogous properties of the eigensystem: nonnegative spec-

trum, null space

Looking for rigorous convergence results



A convergence theorem ∗

Operator L: “out-of-sample extension” of the graph Lapla-

cian L

L(f)(x) =
∑

i

(f(x) − f(xi))e
−

‖x−xi‖
2

ε x ∈ X, f : X → IR

Theorem: Let the u data points {x1, . . . , xu} be sam-

pled from the uniform distribution over the embedded d-

dimensional manifold M. Put ε = u−α, with 0 < α < 1
2+d

.

Then for all f ∈ C∞ and x ∈ X, there is a constant C, s.t.

in probability,

lim
u→∞

C
ε−

d+2
2

u
L(f)(x) = 4Mf(x).

Note: also stronger forms of convergence have been proved.

∗Belkin, Niyogi, 05



Laplacian-based regularization algorithms ∗

Replacing the unknown manifold Laplacian with the graph

Laplacian ‖f‖2I = 1
u2f

TLf , where f is the vector [f(x1), . . . , f(xu)],

we get the minimization problem

f∗ = argmin
f∈H

1

n

n
∑

i=1

V (f(xi), yi) + λA‖f‖
2
K +

λI

u2
fTLf

• λI = 0: standard regularization (RLS and SVM)

• λA → 0: out-of-sample extension for Graph Regular-

ization

• n = 0: unsupervised learning, Spectral Clustering

∗Belkin, Niyogi, Sindhwani, 04



The Representer Theorem

Using the same type of reasoning used in Class 3, a Rep-

resenter Theorem can be easily proved for the solutions of

Manifold Regularization algorithms.

The expansion range over all the supervised and unsu-

pervised data points

f(x) =
u

∑

j=1

cjK(x, xj).



LapRLS

Generalizes the usual RLS algorithm to the semi-supervised

setting.

Set V (w, y) = (w − y)2 in the general functional.

By the representer theorem, the minimization problem can

be restated as follows

c∗ = arg min
c∈IRu

1

n
(y−JKc)T (y−JKc)+λAcTKc+

λI

u2
cTKLKc,

where y is the u-dimensional vector (y1, . . . , yn,0, . . . ,0),

and J is the u × u matrix diag(1, . . . ,1,0, . . . ,0).



LapRLS (cont.)

The functional is differentiable, strictly convex and coer-

cive. The derivative of the object function vanishes at the

minimizer c∗

1

n
KJ(y − JKc∗) + (λAK +

λIn

u2
KLK)c∗ = 0.

From the relation above and noticing that due to the pos-

itivity of λA, the matrix M defined below, is invertible, we

get

c∗ = M−1y,

where

M = JK + λAnI +
λIn

2

u2
LK.



LapSVM

Generalizes the usual SVM algorithm to the semi-supervised

setting.

Set V (w, y) = (1 − yw)+ in the general functional above.

Applying the representer theorem, introducing slack vari-

ables and adding the unpenalized bias term b, we easily get

the primal problem

c∗ = arg min
c∈IRu,ξ∈IRn

1
n

∑n
i=1 ξi + λAcTKc +

λI
u2c

TKLKc

subject to : yi(
∑u

j=1 cjK(xi, xj) + b) ≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n



LapSVM: forming the Lagrangian

As in the analysis of SVM, we derive the Wolfe dual quadratic

program using Lagrange multiplier techniques:

L(c, ξ, b, α, ζ) =
1

n

n
∑

i=1

ξi +
1

2
cT

(

2λAK + 2
λI

u2
KLK

)

c

−
n

∑

i=1

αi



yi







u
∑

j=1

cjK(xi, xj) + b







− 1 + ξi





−
n

∑

i=1

ζiξi

We want to minimize L with respect to c, b, and ξ, and

maximize L with respect to α and ζ, subject to the con-

straints of the primal problem and nonnegativity constraints

on α and ζ.



LapSVM: eliminating b and ξ

∂L

∂b
= 0 =⇒

n
∑

i=1

αiyi = 0

∂L

∂ξi
= 0 =⇒

1

n
− αi − ζi = 0

=⇒ 0 ≤ αi ≤
1

n

We write a reduced Lagrangian in terms of the remaining

variables:

LR(c, α) =
1

2
cT

(

2λAK + 2
λI

u2
KLK

)

c − cTKJTYα +
n

∑

i=1

αi,

where J is the n × u matrix (I 0) with I the n × n identity

matrix and Y = diag(y).



LapSVM: eliminating c

Assuming the K matrix is invertible,

∂LR

∂c
= 0 =⇒

(

2λAK + 2
λI

u2
KLK

)

c − KJTYα = 0

=⇒ c =

(

2λAI + 2
λI

u2
LK

)−1

JTYα

Note that the relationship between c and α is no

longer as simple as in the SVM algorithm.



LapSVM: the dual program

Substituting in our expression for c, we are left with the

following “dual” program:

α∗ = arg max
α∈IRn

∑n
i=1 αi −

1
2αTQα

subject to :
∑n

i=1 yiαi = 0

0 ≤ αi ≤
1
n

i = 1, . . . , n

Here, Q is the matrix defined by

Q = YJK

(

2λAI + 2
λI

u2
LK

)−1

JTY.

One can use a standard SVM solver with the matrix

Q above, hence compute c solving a linear system.



Numerical experiments ∗

• Two Moons Dataset

• Handwritten Digit Recognition

• Spoken Letter Recognition

∗http://manifold.cs.uchicago.edu/manifold regularization


