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Plan

• Regularization derivation of SVMs

• Geometric derivation of SVMs

• Optimality, Duality and Large Scale SVMs

• SVMs and RLSC: Compare and Contrast



The Regularization Setting (Again)

We are given n examples (x1, y1), . . . , (xn, yn), with xi ∈ IRd

and yi ∈ {−1,1} for all i. As mentioned last class, we find

a classification function by solving a regularization:

min
f∈H

1

n

n
∑

i=1

V (yi, f(xi)) + λ||f ||2K.

In this class we specifically consider binary classification.



The Hinge Loss

The classical SVM arises by considering the specific loss

function

V (f(x), y) ≡ (1 − yf(x))+,

where

(k)+ ≡ max(k,0).



The Hinge Loss
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Substituting In The Hinge Loss

With the hinge loss, our regularization problem becomes

min
f∈H

1

n

n
∑

i=1

(1 − yif(xi))+ + λ||f ||2K.



Slack Variables

This problem is non-differentiable (because of the “kink” in

V ), so we introduce slack variables ξi, to make the problem

easier to work with:

min
f∈H

1
n

∑n
i=1 ξi + λ||f ||2K

subject to : yif(xi) ≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n



Applying The Representer Theorem

Substituting in:

f∗(x) =
n
∑

i=1

ciK(x,xi),

we arrive at a constrained quadratic programming problem:

min
c∈IRn

1
n

∑n
i=1 ξi + λcTKc

subject to : yi
∑n

j=1 cjK(xi, xj) ≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n



Adding A Bias Term

If we add an unregularized bias term b, we arrive at the

“primal” SVM:

min
c∈IRn,ξ∈IRn

1
n

∑n
i=1 ξi + λcTKc

subject to : yi(
∑n

j=1 cjK(xi, xj) + b) ≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n



Forming the Lagrangian

We derive the Wolfe dual quadratic program using La-

grange multiplier techniques:

L(c, ξ, b, α, ζ) =
1

n

n
∑

i=1

ξi + λc
TKc

−
n
∑

i=1

αi



yi







n
∑

j=1

cjK(xi, xj) + b







− 1 + ξi





−
n
∑

i=1

ζiξi

We want to minimize L with respect to c, b, and ξ, and

maximize L with respect to α and ζ, subject to the con-

straints of the primal problem and nonnegativity constraints

on α and ζ.



Eliminating b and ξ

∂L

∂b
= 0 =⇒

n
∑

i=1

αiyi = 0

∂L

∂ξi
= 0 =⇒

1

n
− αi − ζi = 0

=⇒ 0 ≤ αi ≤
1

n

We write a reduced Lagrangian in terms of the remaining

variables:

LR(c, α) = λc
TKc −

n
∑

i=1

αi(yi

n
∑

j=1

cjK(xi, xj) − 1)



Eliminating c

Assuming the K matrix is invertible,

∂LR

∂c
= 0 =⇒ 2λKc − KY α = 0

=⇒ ci =
αiyi

2λ

Where Y is a diagonal matrix whose i’th diagonal element

is yi; Y α is a vector whose i’th element is αiyi.



The Dual Program

Substituting in our expression for c, we are left with the

following “dual” program:

max
α∈IRn

∑n
i=1 αi −

1
4λ

αTQα

subject to :
∑n

i=1 yiαi = 0

0 ≤ αi ≤
1
n

i = 1, . . . , n

Here, Q is the matrix defined by

Q = YKY
T ⇐⇒ Qij = yiyjK(xi, xj).



Standard Notation

In most of the SVM literature, instead of the regularization

parameter λ, regularization is controlled via a parameter C,

defined using the relationship

C =
1

2λn
.

Using this definition (after multiplying our objective func-

tion by the constant 1
2λ

, the basic regularization problem

becomes

min
f∈H

C
n
∑

i=1

V (yi, f(xi)) +
1

2
||f ||2K.

Like λ, the parameter C also controls the tradeoff between

classification accuracy and the norm of the function. The

primal and dual problems become. . .



The Reparametrized Problems

min
c∈IRn,ξ∈IRn

C
∑n

i=1 ξi +
1
2cTKc

subject to : yi(
∑n

j=1 cjK(xi, xj) + b) ≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

max
α∈IRn

∑n
i=1 αi −

1
2αTQα

subject to :
∑n

i=1 yiαi = 0

0 ≤ αi ≤ C i = 1, . . . , n



The Geometric Approach

The “traditional” approach to explaining the SVM is via

separating hyperplanes and margin. In a linear space, a

perceptron is a linear hyperplane that separates the pos-

itive and the negative examples. Defining the margin as

the distance from the hyperplane to the nearest example,

intuitively, we expect a hyperplane with larger margin to

generalize better.



Large and Small Margin Hyperplanes

(a) (b)



Classification With Hyperplanes

We denote our hyperplane by w, and we will classify a new

point x via the function

f(x) = sign (w · x). (1)

Given a separating hyperplane w we let x be a datapoint

closest to w, and we let xw be the unique point on w that

is closest to x. Obviously, finding a maximum margin w is

equivalent to maximizing ||x − xw||. . .



Deriving the Maximal Margin, I

For some k (assume k > 0 for convenience),

w · x = k

w · xw = 0

=⇒ w · (x − xw) = k



Deriving the Maximal Margin, II

Noting that the vector x − xw is parallel to the normal

vector w,

w · (x − x
w) = w ·

(

||x − xw||

||w||
w

)

= ||w||2
||x − xw||

||w||

= ||w|| ||x − x
w||

=⇒ ||w|| ||(x − x
w)|| = k

=⇒ ||x − x
w|| =

k

||w||



Deriving the Maximal Margin, III

k is a “nuisance paramter”. WLOG, we fix k to 1, and see

that maximizing ||x−xw|| is equivalent to maximizing 1
||w||

,

which in turn is equivalent to minimizing ||w|| or ||w||2. We

can now define the margin as the distance between the

hyperplanes w · x = 0 and w · x = 1.



The Linear, Homogeneous, Separable SVM

min
w∈IRn

||w||2

subject to : yi(w · x) ≥ 1 i = 1, . . . , n



Bias and Slack

The SVM introduced by Vapnik includes an unregularized

bias term b, leading to classification via a function of the

form:

f(x) = sign (w · x + b).

In practice, we want to work with datasets that are not

linearly separable, so we introduce slacks ξi, just as before.

We can still define the margin as the distance between the

hyperplanes w · x = 0 and w · x = 1, but this is no longer

particularly geometrically satisfying.



The New Primal

With slack variables, the primal SVM problem becomes

min
w∈IRn,b∈IR

C
∑n

i=1 ξi +
1
2||w||2

subject to : yi(w · x + b) ≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n



Historical Perspective

Historically, most developments begin with the geometric

form, derived a dual program which was identical to the

dual we derived above, and only then observed that the

dual program required only dot products and that these

dot products could be replaced with a kernel function.



More Historical Perspective

In the linearly separable case, we can also derive the sep-

arating hyperplane as a vector parallel to the vector con-

necting the closest two points in the positive and negative

classes, passing through the perpendicular bisector of this

vector. This was the “Method of Portraits”, derived by

Vapnik in the 1970’s, and recently rediscovered (with non-

separable extensions) by Keerthi.



The Primal and Dual Problems Again

min
c∈IRn,ξ∈IRn

C
∑n

i=1 ξi +
1
2cTKc

subject to : yi(
∑n

j=1 cjK(xi, xj) + b) ≥ 1 − ξi i = 1, . . . , n

ξi ≥ 0 i = 1, . . . , n

max
α∈IRn

∑n
i=1 αi −

1
2αTQα

subject to :
∑n

i=1 yiαi = 0

0 ≤ αi ≤ C i = 1, . . . , n



Optimal Solutions

The primal and the dual are both feasible convex quadratic

programs. Therefore, they both have optimal solutions,

and optimal solutons to the primal and the dual have the

same objective value.



The Reparametrized Lagrangian

We derived the dual from the primal using the (now repa-

rameterized) Lagrangian:

L(c, ξ, b, α, ζ) = C
n
∑

i=1

ξi + c
TKc

−
n
∑

i=1

αi



yi







n
∑

j=1

cjK(xi, xj) + b







− 1 + ξi





−
n
∑

i=1

ζiξi



Complementary Slackness

Consider the dual variables are associated with the primal

constraints as follows:

αi =⇒ yi







n
∑

j=1

cjK(xi, xj) + b







− 1 + ξi

ζi =⇒ ξi ≥ 0

Complementary slackness tells us that at optimality, either

the primal inequality is satisfied with equality or the dual

variable is zero. In other words, if c, ξ, b, α and ζ are

optimal solutions to the primal and dual, then

αi



yi







n
∑

j=1

cjK(xi, xj) + b







− 1 + ξi



 = 0

ζiξi = 0



Optimality Conditions

All optimal solutions must satisfy:

n
∑

j=1

cjK(xi, xj) −
n
∑

j=1

yiαjK(xi, xj) = 0 i = 1, . . . , n

n
∑

i=1

αiyi = 0

C − αi − ζi = 0 i = 1, . . . , n

yi





n
∑

j=1

yjαjK(xi, xj) + b



− 1 + ξi ≥ 0 i = 1, . . . , n

αi



yi





n
∑

j=1

yjαjK(xi, xj) + b



− 1 + ξi



 = 0 i = 1, . . . , n

ζiξi = 0 i = 1, . . . , n

ξi, αi, ζi ≥ 0 i = 1, . . . , n



Optimality Conditions, II

The optimality conditions are both necessary and suffi-

cient. If we have c, ξ, b, α and ζ satisfying the above

conditions, we know that they represent optimal solutions

to the primal and dual problems. These optimality condi-

tions are also known as the Karush-Kuhn-Tucker (KKT)

conditons.



Toward Simpler Optimality Conditions —
Determining b

Suppose we have the optimal αi’s. Also suppose (this “al-

ways” happens in practice”) that there exists an i satisfying

0 < αi < C. Then

αi < C =⇒ ζi > 0

=⇒ ξi = 0

=⇒ yi





n
∑

j=1

yjαjK(xi, xj) + b



− 1 = 0

=⇒ b = yi −
n
∑

j=1

yjαjK(xi, xj)

So if we know the optimal α’s, we can determine b.



Towards Simpler Optimality Conditions, I

Defining our classification function f(x) as

f(x) =
n
∑

i=1

yiαiK(x, xi) + b,

we can derive “reduced” optimality conditions. For exam-

ple, consider an i such that yif(xi) < 1:

yif(xi) < 1 =⇒ ξi > 0

=⇒ ζi = 0

=⇒ αi = C



Towards Simpler Optimality Conditions, II

Conversely, suppose αi = C:

αi = C =⇒ yif(xi) − 1 + ξi = 0

=⇒ yif(xi) ≤ 1



Reduced Optimality Conditions

Proceeding similarly, we can write the following “reduced”

optimality conditions (full proof: homework):

αi = 0 ⇐⇒ yif(xi) ≥ 1

0 < αi < C ⇐⇒ yif(xi) = 1

αi = C ⇐⇒ yif(xi) ≤ 1



Geometric Interpretation of Reduced
Optimality Conditions



SVM Training

Our plan will be to solve the dual problem to find the α’s,

and use that to find b and our function f . The dual problem

is easier to solve the primal problem. It has simple box

constraints and a single inequality constraint, even better,

we will see that the problem can be decomposed into a

sequence of smaller problems.



Off-the-shelf QP software

We can solve QPs using standard software. Many codes

are available. Main problem — the Q matrix is dense,

and is n-by-n, so we cannot write it down. Standard QP

software requires the Q matrix, so is not suitable for large

problems.



Decomposition, I

Partition the dataset into a working set W and the remainig

points R. We can rewrite the dual problem as:

max
αW∈IR|W |, αR∈IR|R|

∑n
i=1
i∈W

αi +
∑

i=1
i∈R

αi

−1
2[αW αR]

[

QWW QWR

QRW QRR

] [

αW

αR

]

subject to :
∑

i∈W yiαi +
∑

i∈R yiαi = 0

0 ≤ αi ≤ C, ∀i



Decomposition, II

Suppose we have a feasible solution α. We can get a

better solution by treating the αW as variable and the αR

as constant. We can solve the reduced dual problem:

max
αW∈IR|W |

(1 − QWRαR)αW − 1
2αWQWWαW

subject to :
∑

i∈W yiαi = −
∑

i∈R yiαi

0 ≤ αi ≤ C, ∀i ∈ W



Decomposition, III

The reduced problems are fixed size, and can be solved us-

ing a standard QP code. Convergence proofs are difficult,

but this approach seems to always converge to an optimal

solution in practice.



Selecting the Working Set

There are many different approaches. The basic idea is to

examine points not in the working set, find points which

violate the reduced optimality conditions, and add them to

the working set. Remove points which are in the working

set but are far from violating the optimality conditions.



Good Large-Scale Solvers

• SVMLight: http://svmlight.joachims.org

• SVMTorch: http://www.idiap.ch/learning/SVMTorch.html

• LIBSVM: http://wws.csie.ntu.edu.tw/~cjlin/libsvm


