Math Camp 2: Functional analysis
Sayan Mukherjee, Alessandro Verri, Alex Rakhlin

Dense

Let A and B be subspaces of a metric space \mathbb{R}. A is said to be dense in B if $\bar{A} \subset B, \bar{A}$ is the closure of the subset A. In particular A is said to be everywhere dense in \mathbb{R} if $\bar{A}=R$.

A point $x \in \mathbb{R}$ is called a contact point of a set $A \in \mathbb{R}$ if every neighborhood of x contains at least on point of A. The set of all contact points of a set A denoted by \bar{A} is called the closure of A.

Examples

1. The set of all rational points is dense in the real line.
2. The set of all polynomials with rational coefficients is dense in $C[a, b]$.
3. Let K be a positive definite Radial Basis Function then the functions

$$
f(x)=\sum_{i=1}^{n} c_{i} K\left(x-x_{i}\right)
$$

is dense in L_{2}.

Note: A hypothesis space that is dense in L_{2} is a desired property of any approximation scheme.

Separable

A metric space is said to be separable if it has a countable everywhere dense subset.

Examples:

1. The spaces $\mathbb{R}^{1}, \mathbb{R}^{n}, L_{2}[a, b]$, and $C[a, b]$ are all separable.
2. The set of real numbers is separable since the set of rational numbers is a countable subset of the reals and the set of rationals is is everywhere dense.

Completeness

A sequence of functions f_{n} is fundamental if $\forall \epsilon>0 \exists N_{\epsilon}$ such that

$$
\forall n \text { and } m>N_{\epsilon}, \quad \rho\left(f_{n}, f_{m}\right)<\epsilon \text {. }
$$

A metric space is complete if all fundamental sequences converge to a point in the space.
C, L^{1}, and L^{2} are complete. That C_{2} is not complete, instead, can be seen through a counterexample.

Incompleteness of C_{2}

Consider the sequence of functions ($n=1,2, \ldots$)

$$
\phi_{n}(t)=\left\{\begin{array}{cl}
-1 & \text { if }-1 \leq t<-1 / n \\
n t & \text { if }-1 / n \leq t<1 / n \\
1 & \text { if } 1 / n \leq t \leq 1
\end{array}\right.
$$

and assume that ϕ_{n} converges to a continuous function ϕ in the metric of C_{2}. Let

$$
f(t)=\left\{\begin{array}{cl}
-1 & \text { if }-1 \leq t<0 \\
1 & \text { if } 0 \leq t \leq 1
\end{array}\right.
$$

Incompleteness of C_{2} (cont.)

Clearly,

$$
\left(\int(f(t)-\phi(t))^{2} d t\right)^{1 / 2} \leq\left(\int\left(f(t)-\phi_{n}(t)\right)^{2} d t\right)^{1 / 2}+\left(\int\left(\phi_{n}(t)-\phi(t)\right)^{2} d t\right)^{1 / 2} .
$$

Now the I.h.s. term is strictly positive, because $f(t)$ is not continuous, while for $n \rightarrow \infty$ we have

$$
\int\left(f(t)-\phi_{n}(t)\right)^{2} d t \rightarrow 0 .
$$

Therefore, contrary to what assumed, ϕ_{n} cannot converge to ϕ in the metric of C_{2}.

Completion of a metric space

Given a metric space \mathbb{R} with closure $\overline{\mathbb{R}}$, a complete metric space \mathbb{R}^{*} is called a completion of \mathbb{R} if $\mathbb{R} \subset \mathbb{R}^{*}$ and $\overline{\mathbb{R}}=\mathbb{R}^{*}$.

Examples

1. The space of real numbers is the completion of the space of rational numbers.
2. Let K be a positive definite Radial Basis Function then L_{2} is the completion the space of functions

$$
f(x)=\sum_{i=1}^{n} c_{i} K\left(x-x_{i}\right)
$$

Compact spaces

A metric space is compact iff it is totally bounded and complete.

Let \mathbb{R} be a metric space and ϵ any positive number. Then a set $A \subset \mathbb{R}$ is said to be an ϵ-net for a set $M \subset \mathbb{R}$ if for every $x \in M$, there is at least one point $a \in A$ such that $\rho(x, a)<\epsilon$.

Given a metric space \mathbb{R} and a subset $M \subset \mathbb{R}$ suppose M has a finite ϵ-net for every $\epsilon>0$. Then M is said to be totally bounded.

A compact space has a finite ϵ-net for all $\epsilon>0$.

Examples

1. In Euclidean n-space, \mathbb{R}^{n}, total boundedness is equivalent to boundedness. If $M \subset \mathbb{R}$ is bounded then M is contained in some hypercube Q. We can partition this hypercube into smaller hypercubes with sides of length ϵ. The vertices of the little cubes from a finite $\sqrt{n} \epsilon / 2$-net of Q.
2. This is not true for infinite-dimensional spaces. The unit sphere Σ in l_{2} with constraint

$$
\sum_{n=1}^{\infty} x_{n}^{2}=1
$$

is bounded but not totally bounded. Consider the points

$$
e_{1}=(1,0,0, \ldots), e_{2}=(0,1,0,0, \ldots), \ldots
$$

where the n-th coordinate of e_{n} is one and all others are zero. These points lie on Σ but the distance between any two is $\sqrt{2}$. So Σ cannot have a finite ϵ-net with $\epsilon<\sqrt{2} / 2$.
3. Infinite-dimensional spaces maybe totally bounded. Let Π be the set of points $x=\left(x_{1}, \ldots, x_{n}, ..\right)$ in l_{2} satisfying the inequalities

$$
\left|x_{1}\right|<1,\left|x_{2}\right|<\frac{1}{2}, \ldots,\left|x_{n}\right|<\frac{1}{2^{n-1}}, \ldots
$$

The set Π called the Hilbert cube is an example of an infinite-dimensional totally bounded set. Given any $\epsilon>0$, choose n such that

$$
\frac{1}{2^{n+1}}<\frac{\epsilon}{2}
$$

and with each point

$$
x=\left(x_{1}, \ldots, x_{n}, . .\right)
$$

is Π associate the point

$$
\begin{equation*}
x^{*}=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right) \tag{1}
\end{equation*}
$$

Then

$$
\rho\left(x, x^{*}\right)=\sqrt{\sum_{k=n+1}^{\infty} x_{k}^{2}}<\sqrt{\sum_{k=n}^{\infty} \frac{1}{4^{k}}}<\frac{1}{2^{n-1}}<\frac{\epsilon}{2}
$$

The set Π^{*} of all points in Π that satisfy (1) is totally bounded since it is a bounded set in n-space.
4. The RKHS induced by a kernel K with an infinite number of positive eigenvalues that decay exponentially is compact. In this case, our vector $x=\left(x_{1}, \ldots, x_{n}, ..\right)$ can
be written in terms of its basis functions, the eigenvectors of K. Now for the RKHS norm to be bounded

$$
\left|x_{1}\right|<\mu_{1},\left|x_{2}\right|<\mu_{2}, \ldots,\left|x_{n}\right|<\mu_{n}, \ldots
$$

and we know that $\mu_{n}=O\left(n^{-\alpha}\right)$. So we have the case analogous to the Hilbert cube and we can introduce a point

$$
\begin{equation*}
x^{*}=\left(x_{1}, \ldots, x_{n}, 0,0, \ldots\right) \tag{2}
\end{equation*}
$$

in a bounded n-space which can be made arbitrarily close to x.

Compactness and continuity

A family Φ of functions ϕ defined on a closed interval $[a, b]$ is said to be uniformly bounded if for $K>0$

$$
|\phi(x)|<K
$$

for all $x \in[a, b]$ and all $\phi \in \Phi$.

A family Φ of functions ϕ is equicontinuous of for any given $\epsilon>0$ there exists $\delta>0$ such that $|x-y|<\delta$ implies

$$
|\phi(x)-\phi(y)|<\epsilon
$$

for all $x, y \in[a, b]$ and all $\phi \in \Phi$.

Arzela's theorem: A necessary and sufficient condition for a family Φ of continuous functions defined on a closed interval $[a, b]$ to be (relatively) compact in $C[a, b]$ is that Φ is uniformly bounded and equicontinuous.

Linear space

A set L of elements x, y, z, \ldots is a linear space if the following three axioms are satisfied:

1. Any two elements $x, y \in L$ uniquely determine a third element in $x+y \in L$ called the sum of x and y such that
(a) $x+y=y+x$ (commutativity)
(b) $(x+y)+z=x+(y+z)$ (associativity)
(c) An element $0 \in L$ exists for which $x+0=x$ for all $x \in L$
(d) For every $x \in L$ there exists an element $-x \in L$ with the property $x+(-x)=0$
2. Any number α and any element $x \in L$ uniquely determine an element $\alpha x \in L$ called the product such that (a) $\alpha(\beta x)=\beta(\alpha x)$
(b) $1 x=x$
3. Addition and multiplication follow two distributive laws (a) $(\alpha+\beta) x=\alpha x+\beta x$ (b) $\alpha(x+y)=\alpha x+\alpha y$

Linear functional

A functional, \mathcal{F}, is a function that maps another function to a real-value

$$
\mathcal{F}: f \rightarrow \mathbb{R} .
$$

A linear functional defined on a linear space L, satisfies the following two properties

1. Additive: $\mathcal{F}(f+g)=\mathcal{F}(f)+\mathcal{F}(g)$ for all $f, g \in L$
2. Homogeneous: $\mathcal{F}(\alpha f)=\alpha \mathcal{F}(f)$

Examples

1. Let \mathbb{R}^{n} be a real n -space with elements $x=\left(x_{1}, \ldots, x_{n}\right)$, and $a=\left(a_{1}, \ldots, a_{n}\right)$ be a fixed element in \mathbb{R}^{n}. Then

$$
\mathcal{F}(x)=\sum_{i=1}^{n} a_{i} x_{i}
$$

is a linear functional
2. The integral

$$
\mathcal{F}[f(x)]=\int_{a}^{b} f(x) p(x) d x
$$

is a linear functional
3. Evaluation functional: another linear functional is the

Dirac delta function

$$
\delta_{t}[f(\cdot)]=f(t)
$$

Which can be written

$$
\delta_{t}[f(\cdot)]=\int_{a}^{b} f(x) \delta(x-t) d x
$$

4. Evaluation functional: a positive definite kernel in a RKHS

$$
\mathcal{F}_{t}[f(\cdot)]=\left(K_{t}, f\right)=f(t) .
$$

This is simply the reproducing property of the RKHS.

Fourier Transform

The Fourier Transform of a real valued function $f \in L_{1}$ is the complex valued function $\tilde{f}(\omega)$ defined as

$$
\mathcal{F}[f(x)]=\tilde{f}(\omega)=\int_{-\infty}^{+\infty} f(x) e^{-j \omega x} d x
$$

The FT \tilde{f} can be thought of as a representation of the information content of $f(x)$. The original function f can be obtained through the inverse Fourier Transform as

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \tilde{f}(\omega) e^{j \omega x} d \omega
$$

Properties

$$
\begin{aligned}
f(a t) & \Leftrightarrow \frac{1}{|a|} F\left(\frac{\omega}{a}\right) \\
f^{*}(t) & \Leftrightarrow F^{*}(\omega) \\
F(t) & \Leftrightarrow 2 \pi f(-\omega) \\
f\left(t-t_{0}\right) & \Leftrightarrow F(\omega) e^{-j t_{0} \omega} \\
f(t) e^{j_{0} t} & \Leftrightarrow F\left(\omega-\omega_{0}\right) \\
\frac{d^{n} f(t)}{d t^{n}} & \Leftrightarrow(j \omega)^{n} F(\omega) \\
(-j t)^{n} f(t) & \Leftrightarrow \frac{d^{n} F(\omega)}{d \omega^{n}} \\
\int_{-\infty}^{\infty} f_{1}(\tau) f_{2}(t-\tau) d \tau & \Leftrightarrow F_{1}(\omega) F_{2}(\omega) \\
\int_{-\infty}^{\infty} f^{*}(\tau) f(t+\tau) d \tau & \Leftrightarrow|F(\omega)|^{2}
\end{aligned}
$$

Properties

The box and the sinc

$$
\begin{aligned}
f(t) & =1 \text { if }-a \leq t \leq a \text { and } 0 \text { otherwise } \\
F(\omega) & =\frac{2 \sin (a \omega)}{\omega}
\end{aligned}
$$

Properties

The Gaussian

$$
\begin{aligned}
f(t) & =e^{-a t^{2}} \\
F(\omega) & =\sqrt{\frac{\pi}{a}} e^{-\omega^{2} / 4 a}
\end{aligned}
$$

Properties

The Laplacian and Cauchy distributions

$$
\begin{aligned}
f(t) & =e^{-a|t|} \\
F(\omega) & =\frac{2 a}{a^{2}+\omega^{2}}
\end{aligned}
$$

Fourier Transform in the distribution sense

With due care, the Fourier Transform can be defined in the distribution sense. For example, we have

- $\delta(x) \Longleftrightarrow 1$
- $\cos \left(\omega_{0} x\right) \Longleftrightarrow \pi\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right)$
- $\sin \left(\omega_{0} x\right) \Longleftrightarrow j \pi\left(\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right)$
- $U(x) \Longleftrightarrow \pi \delta(\omega)-j / \omega$
$\cdot|x| \Longleftrightarrow-2 / \omega^{2}$

Parseval's formula

If f is also square integrable, the Fourier Transform leaves the norm of f unchanged. Parseval's formula states that

$$
\int_{-\infty}^{+\infty}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}|\tilde{f}(\omega)|^{2} d \omega
$$

Fourier Transforms of functions and distributions

The following are Fourier transforms of some functions and distributions

- $f(x)=\delta(x) \Longleftrightarrow \tilde{f}(\omega)=1$
- $f(x)=\cos \left(\omega_{0} x\right) \Longleftrightarrow \tilde{f}(\omega)=\pi\left(\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right)$
- $f(x)=\sin \left(\omega_{0} x\right) \Longleftrightarrow \tilde{f}(\omega)=i \pi\left(\delta\left(\omega+\omega_{0}\right)-\delta\left(\omega-\omega_{0}\right)\right)$
- $f(x)=U(x) \Longleftrightarrow \tilde{f}(\omega)=\pi \delta(\omega)-i / \omega$
- $f(x)=|x| \Longleftrightarrow \tilde{f}(\omega)=-2 / \omega^{2}$.

Functional differentiation

In analogy with standard calculus, the minimum of a functional can be obtained by setting equal to zero the derivative of the functional. If the functional depends on the derivatives of the unknown function, a further step is required (as the unknown function has to be found as the solution of a differential equation).

Functional differentiation

The derivative of a functional $\Phi[f]$ is defined

$$
\frac{D \Phi[f]}{D f(s)}=\lim _{h \rightarrow 0} \frac{\Phi[f(t)+h \delta(t-s)]-\Phi[f(t)]}{h} .
$$

Note that the derivative depends on the location s. For example, if $\Phi[f]=\int_{-\infty}^{+\infty} f(t) g(t) d t$

$$
\frac{D \Phi[f]}{D f(s)}=\int_{-\infty}^{+\infty} g(t) \delta(t-s) d t=g(s) .
$$

Intuition

Let $f:[a, b] \rightarrow \mathbb{R}, a=x_{1}$ and $b=x_{N}$. The intuition behind this definition is that the functional $\Phi[f]$ can be thought of as the limit for $N \rightarrow \infty$ of the function of N variables

$$
\Phi_{N}=\Phi_{N}\left(f_{1}, f_{2}, \ldots, f_{N}\right)
$$

with $f_{1}=f\left(x_{1}\right), f_{2}=f\left(x_{2}\right), \ldots f_{N}=f\left(x_{N}\right)$.

For $N \rightarrow \infty, \Phi$ depends on the entire function f. The dependence on the location brought in by the δ function corresponds to the partial derivative with respect to the variable f_{k}.

Functional differentiation (cont.)

If $\Phi[f]=f(t)$, the derivative is simply

$$
\frac{D \Phi[f]}{D f(s)}=\frac{D f(t)}{D f(s)}=\delta(t-s) .
$$

Similarly to ordinary calculus, the minimum of a functional $\Phi[f]$ is obtained as the function solution to the equation

$$
\frac{D \Phi[f]}{D f(s)}=0 .
$$

Random variables

We are given a random variable $\xi \sim F$. To define a random variable you need three things:

1) a set to draw the values from, we'll call this Ω
2) a σ-algebra of subsets of Ω, we'll call this \mathcal{B}
3) a probability measure F on \mathcal{B} with $F(\Omega)=1$

So ($\Omega, \mathcal{B}, F)$ is a probability space and a random variable is a measurable function $X: \Omega \rightarrow \mathbb{R}$.

Expectations

Given a random variable $\xi \sim F$ the expectation is

$$
\mathbb{E} \xi \equiv \int \xi d F .
$$

Similarly the variance of the random variable $\sigma^{2}(\xi)$ is

$$
\operatorname{var}(\xi) \equiv \mathbb{E}(\xi-\mathbb{E} \xi)^{2}
$$

Law of large numbers

The law of large numbers tells us:

$$
\lim _{\ell \rightarrow \infty} \frac{1}{\ell} \sum_{i=1}^{\ell} I_{\left[f\left(x_{i}\right) \neq y_{i}\right]} \rightarrow \mathbb{E}_{x, y} I_{[f(x) \neq y]}
$$

If $\ell \sigma \rightarrow \infty$ the Central Limit Theorem states:

$$
\frac{\sqrt{\ell}\left(\frac{1}{\ell} \sum I-\mathbb{E} I\right)}{\sqrt{\operatorname{var} I}} \rightarrow N(0,1)
$$

which implies

$$
\left|\frac{1}{\ell} \sum I-\mathbb{E} I\right| \sim \frac{k}{\sqrt{\ell}}
$$

If $\ell \sigma \rightarrow c$ the Central Limit Theorem implies

$$
\left|\frac{1}{\ell} \sum I-\mathbb{E} I\right| \sim \frac{k}{\ell}
$$

Useful Probability Inequalities

Jensen's inequality: if ϕ is a convex function, then

$$
\phi(\mathbb{E}(X)) \leq \mathbb{E}(\phi(X)) .
$$

For $X \geq 0$,

$$
\mathbb{E}(X)=\int_{0}^{\infty} \operatorname{Pr}(X \geq t) d t
$$

Markov's inequality: if $X \geq 0$, then

$$
\operatorname{Pr}(X \geq t) \leq \frac{\mathbb{E}(X)}{t}
$$

where $t \geq 0$.

Useful Probability Inequalities

Chebyshev's inequality (second moment): if X is arbitrary random variable and $t>0$,

$$
\operatorname{Pr}(|X-\mathbb{E}(X)| \geq t) \leq \frac{\operatorname{var}(X)}{t^{2}}
$$

Cauchy-Schwarz inequality: if $\mathbb{E}\left(X^{2}\right)$ and $\mathbb{E}\left(Y^{2}\right)$ are finite, then

$$
|\mathbb{E}(X Y)| \leq \sqrt{\mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)}
$$

Useful Probability Inequalities

If X is a sum of independent variables, then X is better approximated by $\mathbb{E}(X)$ than predicted by Chebyshev's inequality. In fact, it's exponentially close!

Hoeffding's inequality:

Let X_{1}, \ldots, X_{n} be independent bounded random variables, $a_{i} \leq X_{i} \leq b_{i}$ for any $i \in 1 \ldots n$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$, then for any $t>0$,

$$
\operatorname{Pr}\left(\left|S_{n}-\mathbb{E}\left(S_{n}\right)\right| \geq t\right) \leq 2 \exp \left(\frac{-2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

Playing with Expectations

Fix a function f, loss V, and dataset $S=\left\{z_{1}, \ldots, z_{n}\right\}$. The empirical loss of f on this data is $I_{S}[f]=\frac{1}{n} \sum_{i=1}^{n} V\left(f, z_{i}\right)$. The expected error of f is $I[f]=\mathbb{E}_{z} V(f, z)$. What is the expected empirical error with respect to a draw of a set S of size n ?

$$
\mathbb{E}_{S} I_{S}[f]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{S} V\left(f, z_{i}\right)=\mathbb{E}_{S} V\left(f, z_{1}\right)
$$

