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Dense

Let A and B be subspaces of a metric space IR. A is said

to be dense in B if Ā ⊂ B. Ā is the closure of the subset

A. In particular A is said to be everywhere dense in IR if

Ā = R.

A point x ∈ IR is called a contact point of a set A ∈ IR if

every neighborhood of x contains at least on point of A.

The set of all contact points of a set A denoted by Ā is

called the closure of A.



Examples

1. The set of all rational points is dense in the real line.

2. The set of all polynomials with rational coefficients is

dense in C[a, b].

3. Let K be a positive definite Radial Basis Function then

the functions

f(x) =
n
∑

i=1

ciK(x − xi)

is dense in L2.

Note: A hypothesis space that is dense in L2 is a desired

property of any approximation scheme.



Separable

A metric space is said to be separable if it has a countable

everywhere dense subset.

Examples:

1. The spaces IR1, IRn, L2[a, b], and C[a, b] are all separa-

ble.

2. The set of real numbers is separable since the set of

rational numbers is a countable subset of the reals and

the set of rationals is is everywhere dense.



Completeness

A sequence of functions fn is fundamental if ∀ε > 0 ∃Nε

such that

∀n and m > Nε, ρ(fn, fm) < ε.

A metric space is complete if all fundamental sequences

converge to a point in the space.

C, L1, and L2 are complete. That C2 is not complete,

instead, can be seen through a counterexample.



Incompleteness of C2

Consider the sequence of functions (n = 1,2, ...)

φn(t) =











−1 if − 1 ≤ t < −1/n
nt if − 1/n ≤ t < 1/n
1 if 1/n ≤ t ≤ 1

and assume that φn converges to a continuous function φ

in the metric of C2. Let

f(t) =

{

−1 if − 1 ≤ t < 0
1 if 0 ≤ t ≤ 1



Incompleteness of C2 (cont.)

Clearly,
(
∫

(f(t) − φ(t))2dt

)1/2

≤
(
∫

(f(t) − φn(t))
2dt

)1/2

+

(
∫

(φn(t) − φ(t))2dt

)1/2

.

Now the l.h.s. term is strictly positive, because f(t) is not

continuous, while for n → ∞ we have
∫

(f(t) − φn(t))
2dt → 0.

Therefore, contrary to what assumed, φn cannot converge

to φ in the metric of C2.



Completion of a metric space

Given a metric space IR with closure ĪR, a complete metric

space IR∗ is called a completion of IR if IR ⊂ IR∗ and

ĪR = IR∗.

Examples

1. The space of real numbers is the completion of the

space of rational numbers.

2. Let K be a positive definite Radial Basis Function then

L2 is the completion the space of functions

f(x) =
n
∑

i=1

ciK(x − xi).



Compact spaces

A metric space is compact iff it is totally bounded and

complete.

Let IR be a metric space and ε any positive number. Then

a set A ⊂ IR is said to be an ε-net for a set M ⊂ IR if for

every x ∈ M , there is at least one point a ∈ A such that

ρ(x, a) < ε.

Given a metric space IR and a subset M ⊂ IR suppose M

has a finite ε-net for every ε > 0. Then M is said to be

totally bounded.

A compact space has a finite ε-net for all ε > 0.



Examples

1. In Euclidean n-space, IRn, total boundedness is equiv-

alent to boundedness. If M ⊂ IR is bounded then M
is contained in some hypercube Q. We can partition

this hypercube into smaller hypercubes with sides of

length ε. The vertices of the little cubes from a finite√
nε/2-net of Q.

2. This is not true for infinite-dimensional spaces. The

unit sphere Σ in l2 with constraint

∞
∑

n=1

x2
n = 1,

is bounded but not totally bounded. Consider the

points

e1 = (1,0,0, ...), e2 = (0,1,0,0, ...), ...,



where the n-th coordinate of en is one and all others are

zero. These points lie on Σ but the distance between

any two is
√

2. So Σ cannot have a finite ε-net with

ε <
√

2/2.

3. Infinite-dimensional spaces maybe totally bounded. Let

Π be the set of points x = (x1, ..., xn, ..) in l2 satisfying

the inequalities

|x1| < 1, |x2| <
1

2
, ..., |xn| <

1

2n−1
, ...

The set Π called the Hilbert cube is an example of

an infinite-dimensional totally bounded set. Given any

ε > 0, choose n such that

1

2n+1
<

ε

2
,



and with each point

x = (x1, ..., xn, ..)

is Π associate the point

x∗ = (x1, ..., xn,0,0, ...). (1)

Then

ρ(x, x∗) =

√

√

√

√

∞
∑

k=n+1

x2
k <

√

√

√

√

∞
∑

k=n

1

4k
<

1

2n−1
<

ε

2
.

The set Π∗ of all points in Π that satisfy (1) is totally

bounded since it is a bounded set in n-space.

4. The RKHS induced by a kernel K with an infinite num-

ber of positive eigenvalues that decay exponentially is

compact. In this case, our vector x = (x1, ..., xn, ..) can



be written in terms of its basis functions, the eigenvec-

tors of K. Now for the RKHS norm to be bounded

|x1| < µ1, |x2| < µ2, ..., |xn| < µn, ...

and we know that µn = O(n−α). So we have the case

analogous to the Hilbert cube and we can introduce a

point

x∗ = (x1, ..., xn,0,0, ...) (2)

in a bounded n-space which can be made arbitrarily

close to x.



Compactness and continuity

A family Φ of functions φ defined on a closed interval [a, b]

is said to be uniformly bounded if for K > 0

|φ(x)| < K

for all x ∈ [a, b] and all φ ∈ Φ.

A family Φ of functions φ is equicontinuous of for any given

ε > 0 there exists δ > 0 such that |x − y| < δ implies

|φ(x) − φ(y)| < ε

for all x, y ∈ [a, b] and all φ ∈ Φ.

Arzela’s theorem: A necessary and sufficient condition for

a family Φ of continuous functions defined on a closed

interval [a, b] to be (relatively) compact in C[a, b] is that Φ

is uniformly bounded and equicontinuous.



Linear space

A set L of elements x, y, z, ... is a linear space if the fol-

lowing three axioms are satisfied:

1. Any two elements x, y ∈ L uniquely determine a third

element in x + y ∈ L called the sum of x and y such

that

(a) x + y = y + x (commutativity)

(b) (x + y) + z = x + (y + z) (associativity)

(c) An element 0 ∈ L exists for which x + 0 = x for all

x ∈ L

(d) For every x ∈ L there exists an element −x ∈ L

with the property x + (−x) = 0



2. Any number α and any element x ∈ L uniquely deter-

mine an element αx ∈ L called the product such that

(a) α(βx) = β(αx)

(b) 1x = x

3. Addition and multiplication follow two distributive laws

(a)(α + β)x = αx + βx

(b)α(x + y) = αx + αy



Linear functional

A functional, F, is a function that maps another function

to a real-value

F : f → IR.

A linear functional defined on a linear space L, satisfies the

following two properties

1. Additive: F(f + g) = F(f) + F(g) for all f, g ∈ L

2. Homogeneous: F(αf) = αF(f)



Examples

1. Let IRn be a real n-space with elements x = (x1, ..., xn),

and a = (a1, ..., an) be a fixed element in IRn. Then

F(x) =
n
∑

i=1

aixi

is a linear functional

2. The integral

F[f(x)] =

∫ b

a
f(x)p(x)dx

is a linear functional

3. Evaluation functional: another linear functional is the



Dirac delta function

δt[f(·)] = f(t).

Which can be written

δt[f(·)] =

∫ b

a
f(x)δ(x − t)dx.

4. Evaluation functional: a positive definite kernel in a

RKHS

Ft[f(·)] = (Kt, f) = f(t).

This is simply the reproducing property of the RKHS.



Fourier Transform

The Fourier Transform of a real valued function f ∈ L1 is

the complex valued function f̃(ω) defined as

F[f(x)] = f̃(ω) =

∫ +∞

−∞
f(x) e−jωxdx.

The FT f̃ can be thought of as a representation of the

information content of f(x). The original function f can

be obtained through the inverse Fourier Transform as

f(x) =
1

2π

∫ +∞

−∞
f̃(ω) ejωxdω.



Properties

f(at) ⇔ 1

|a|
F

(

ω

a

)

f∗(t) ⇔ F ∗(ω)

F (t) ⇔ 2πf(−ω)

f(t − t0) ⇔ F (ω)e−jt0ω

f(t)ejω0t ⇔ F (ω − ω0)

dnf(t)

dtn
⇔ (jω)nF (ω)

(−jt)nf(t) ⇔ dnF (ω)

dωn
∫ ∞

−∞
f1(τ)f2(t − τ)dτ ⇔ F1(ω)F2(ω)

∫ ∞

−∞
f∗(τ)f(t + τ)dτ ⇔ |F (ω)|2



Properties

The box and the sinc

f(t) = 1 if − a ≤ t ≤ a and 0 otherwise

F (ω) =
2 sin(aω)

ω
.
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Properties

The Gaussian

f(t) = e−at2

F (ω) =

√

π

a
e−ω2/4a.
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Properties

The Laplacian and Cauchy distributions

f(t) = e−a|t|

F (ω) =
2a

a2 + ω2
.
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Fourier Transform in the distribution sense

With due care, the Fourier Transform can be defined in

the distribution sense. For example, we have

• δ(x) ⇐⇒ 1

• cos(ω0x) ⇐⇒ π(δ(ω − ω0) + δ(ω + ω0))

• sin(ω0x) ⇐⇒ jπ(δ(ω + ω0) − δ(ω − ω0))

• U(x) ⇐⇒ πδ(ω) − j/ω

• |x| ⇐⇒ −2/ω2



Parseval’s formula

If f is also square integrable, the Fourier Transform leaves

the norm of f unchanged. Parseval’s formula states that
∫ +∞

−∞
|f(x)|2dx =

1

2π

∫ +∞

−∞
|f̃(ω)|2dω.



Fourier Transforms of functions and
distributions

The following are Fourier transforms of some functions and

distributions

• f(x) = δ(x) ⇐⇒ f̃(ω) = 1

• f(x) = cos(ω0x) ⇐⇒ f̃(ω) = π(δ(ω − ω0) + δ(ω + ω0))

• f(x) = sin(ω0x) ⇐⇒ f̃(ω) = iπ(δ(ω + ω0) − δ(ω − ω0))

• f(x) = U(x) ⇐⇒ f̃(ω) = πδ(ω) − i/ω

• f(x) = |x| ⇐⇒ f̃(ω) = −2/ω2.



Functional differentiation

In analogy with standard calculus, the minimum of a func-

tional can be obtained by setting equal to zero the deriva-

tive of the functional. If the functional depends on the

derivatives of the unknown function, a further step is re-

quired (as the unknown function has to be found as the

solution of a differential equation).



Functional differentiation

The derivative of a functional Φ[f ] is defined

DΦ[f ]

Df(s)
= lim

h→0

Φ[f(t) + hδ(t − s)] − Φ[f(t)]

h
.

Note that the derivative depends on the location s. For

example, if Φ[f ] =
∫+∞
−∞ f(t)g(t)dt

DΦ[f ]

Df(s)
=
∫ +∞

−∞
g(t)δ(t − s)dt = g(s).



Intuition

Let f : [a, b] → IR, a = x1 and b = xN. The intuition behind

this definition is that the functional Φ[f ] can be thought

of as the limit for N → ∞ of the function of N variables

ΦN = ΦN(f1, f2, ..., fN)

with f1 = f(x1), f2 = f(x2), ... fN = f(xN).

For N → ∞, Φ depends on the entire function f . The

dependence on the location brought in by the δ function

corresponds to the partial derivative with respect to the

variable fk.



Functional differentiation (cont.)

If Φ[f ] = f(t), the derivative is simply

DΦ[f ]

Df(s)
=

Df(t)

Df(s)
= δ(t − s).

Similarly to ordinary calculus, the minimum of a functional

Φ[f ] is obtained as the function solution to the equation

DΦ[f ]

Df(s)
= 0.



Random variables

We are given a random variable ξ ∼ F . To define a random

variable you need three things:

1) a set to draw the values from, we’ll call this Ω

2) a σ-algebra of subsets of Ω, we’ll call this B
3) a probability measure F on B with F (Ω) = 1

So (Ω,B, F ) is a probability space and a random variable

is a measurable function X : Ω → IR.



Expectations

Given a random variable ξ ∼ F the expectation is

IEξ ≡
∫

ξdF.

Similarly the variance of the random variable σ2(ξ) is

var(ξ) ≡ IE(ξ − IEξ)2.



Law of large numbers

The law of large numbers tells us:

lim
`→∞

1

`

∑̀

i=1

I[f(xi)6=yi]
→ IEx,yI[f(x) 6=y].

If `σ → ∞ the Central Limit Theorem states:
√

`(1
`

∑

I − IEI)√
varI

→ N(0,1),

which implies
∣

∣

∣

∣

1

`

∑

I − IEI

∣

∣

∣

∣

∼ k√
`
.

If `σ → c the Central Limit Theorem implies
∣

∣

∣

∣

1

`

∑

I − IEI

∣

∣

∣

∣

∼ k

`
.



Useful Probability Inequalities

Jensen’s inequality: if φ is a convex function, then

φ(IE(X)) ≤ IE(φ(X)).

For X ≥ 0,

IE(X) =
∫ ∞

0
Pr(X ≥ t)dt.

Markov’s inequality: if X ≥ 0, then

Pr(X ≥ t) ≤ IE(X)

t
,

where t ≥ 0.



Useful Probability Inequalities

Chebyshev’s inequality (second moment): if X is arbitrary

random variable and t > 0,

Pr(|X − IE(X)| ≥ t) ≤ var(X)

t2
.

Cauchy-Schwarz inequality: if IE(X2) and IE(Y 2) are finite,

then

|IE(XY )| ≤
√

IE(X2)IE(Y 2).



Useful Probability Inequalities

If X is a sum of independent variables, then X is better

approximated by IE(X) than predicted by Chebyshev’s in-

equality. In fact, it’s exponentially close!

Hoeffding’s inequality:

Let X1, ..., Xn be independent bounded random variables,

ai ≤ Xi ≤ bi for any i ∈ 1...n. Let Sn =
∑n

i=1 Xi, then for

any t > 0,

Pr(|Sn − IE(Sn)| ≥ t) ≤ 2exp

(

−2t2
∑n

i=1(bi − ai)
2

)



Playing with Expectations

Fix a function f , loss V , and dataset S = {z1, ..., zn}. The

empirical loss of f on this data is IS[f ] = 1
n

∑n
i=1 V (f, zi).

The expected error of f is I[f ] = IEzV (f, z). What is the

expected empirical error with respect to a draw of a set S

of size n?

IESIS[f ] =
1

n

n
∑

i=1

IESV (f, zi) = IESV (f, z1)


