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About this class

Goal To introduce an alternate perspective of RKHS via

integral operators and Mercer’s theorem. Formulate

the problem of RKHS on unbounded domains. Con-

struct RKHS from frames and wavelets.



Integral operators

Consider the integral operator LK on L2(X, ν) defined by
∫

X
K(s, t)f(s)dν(s) = g(t)

where X is a compact subset of IRn and ν a Borel measure.∗

If K is pd then LK is positive that is
∫

X
K(t, s)f(t)f(s)dν(t)dν(s) ≥ 0

for all f ∈ L2(X, ν). The converse is also true, that is LK

positive implies that K is pd.

∗We assume K to be continuous which implies the integral operator
is compact.



Mercer’s theorem

A symmetric, pd kernel K : X ×X → IR, with X a compact

subset of IRn has the expansion

K(s, t) =
∞
∑

q=1

µqφq(s)φq(t)

where the convergence is in L2(X, ν).∗

The φq are the orthonormal eigenfunctions of the integral

equation
∫

X
K(s, t)φ(s)dν(s) = µ φ(t).

∗If the measure ν on X is non-degenerate in the sense that open sets
have positive measure everywhere, then the convergence is absolute
and uniform and the φ(x) are continuous on X (see Cucker and Smale
and their correction to the Bull Am Math paper).



RKHS can be very rich

For many kernels K the number of positive eigenvalues,

µq, is infinite. The corresponding RKHS are dense in L2.

This means is that these hypothesis spaces are “big”, since

they can approximate arbitrarily well a very rich class of

functions can be approximated.

One reason why we work with RKHS because they can

represent a very large set of hypotheses.



Another view of RKHS

Consider the space of functions associated with a pd kernel

K by Mercer’s theorem, that is spanned by the φp(s),

HK = {f | f(s) =
∞
∑

p=1

cpφp(s)}.

The space H is the RKHS associated with K if I assume

that ‖f‖K < ∞, where ‖f‖K is the norm induced by the dot

product defined as

〈f, g〉K =

〈 ∞
∑

p=1

cpφp(s),
∞
∑

q=1

dqφq(s)

〉

K

≡
∞
∑

p=1

dpcp

µp

,

‖f‖2
K =

〈 ∞
∑

p=1

cpφp(s),
∞
∑

q=1

cqφq(s)

〉

K

≡
∞
∑

p=1

c2
p

µp

.



Another view of RKHS (consistency checks)

One can check that the dot product defined above gives

the reproducing property of K

〈f(·), K(·, x)〉K =
∑

p

cpφp(x)µp

µp

=
∑

p
cpφp(x)

= f(x).

One can also check that the dot product defined above

is the same as the dot product defined earlier, that is

〈f, g〉K =
∑

i,j αiβjK(xi, xj) by using Mercer’s theorem. The

RKHS defined in these two ways is the same (for rigorous

proofs see Cucker and Smale).



Another proof of the representer theorem

Let us now derive the main result of an earlier class using Mercer
theorem. The functional to be minimized can be written as

`
∑

i=1

(yi − f(xi))
2 + λ

∞
∑

p=1

c2

p

λp

.

Since we know that f(x) =
∑∞

q=1
cqφq(x), taking the derivative with

respect to cq gives

cq = λq

`
∑

i=1

αiφq(xi),

with αi = (yi − f(xi))/λ, from which we find

f(x) =

∞
∑

q=1

`
∑

i=1

αiλqφq(xi)φq(x) =

`
∑

i=1

αiK(x, xi).

Note that unlike the case of translation invariance, the kernel function
can also be a true function of two variables.



Unbounded domains: 1-D Linear Splines

If

‖f‖2
K ≡

∫

|f ′|2(x)dx =
1

2π

∫

ω2|f̃(ω)|2dω

then

K̃(ω) =
1

ω2
and K(x − y) ∝ |x − y|.

So

f(x) =
∑̀

i=1

αi|x − xi| + d1.

The solution is a piecewise linear polynomial, i.e. a

spline of order 1.



Mercer’s theorem on unbounded domains

If the kernel is symmetric but defined over an unbounded

domain, say L2([−∞,∞] × [∞,∞]), the eigenvalues of the

equation
∫ ∞

−∞
K(s, t)φ(s)ds = λφ(t)

are not necessarily countable and Mercer theorem does not

apply.

Let us consider the special case, of considerable interest

in the learning context, in which the kernel is translation

invariant, or

K(s, t) = K(s − t).

As we will see, this implies that we will have to con-

sider Fourier hypotheses spaces! BTW, the many different

Fourier hypotheses spaces all have the same “features”!



Fourier Transform

The Fourier Transform of a real valued function f ∈ L1 is

the complex valued function f̃(ω) defined as

f̃(ω) =

∫ +∞

−∞
f(x) e−jωxdx

The original function f can be obtained through the inverse

Fourier Transform as

f(x) =
1

2π

∫ +∞

−∞
f̃(ω) ejωxdω

Notice that periodic functions can be expanded in a Fourier

series. This can be shown from the periodicity condition

f(x + T ) = f(x) for T = 2π
ω0

. Taking the Fourier transform

of both side yields f̃(ω) e−jωT = f̃(ω). This is possible if

f̃(ω) 6= 0 only when ω = nω0. This implies for nontrivial f

f̃(ω) =
∑

n βnδ(ω − nω0), which is a Fourier series.



Parseval’s formula

If f is also square integrable, the Fourier Transform leaves

the norm of f unchanged. Parseval formula gives
∫ +∞

−∞
|f(x)|2dx =

1

2π

∫ +∞

−∞
|f̃(ω)|2dω.



A Mercer-like theorem for translation
invariant kernels

For shift invariant kernels

K(s − t) =
1

2π

∫ +∞

−∞
K̃(ω)ejω(s−t)dω

=
1

2π

∫ +∞

−∞
K̃(ω)ejω(s)ejω(−t)dω.

For kernels to which Mercer theorem applies (those with a

bounded domain)

K(s, t) =
∞
∑

p=1

λpφp(s)φ
∗
p(t).

This suggests the following correspondence

K̃(ω) → λp and ejωs → φp(s).



A Mercer-like theorem for translation
invariant kernels

The associated eigenvalue problem is then:
∫ ∞

−∞
K(s − t)φ(s)ds = λφ(t).

Notice that (because of the convolution theorem) the Fourier

transform of the above is K̃(ω)φ̃(ω) = λφ̃(ω).



Bochner theorem

A function K(s − t) is positive definite if and only if it

is the Fourier transform of a symmetric, positive function

K̃(ω) decreasing to 0 at infinity.

This sounds familiar and it is necessary to make consistent

the previous correspondance.



RKHS for shift-invariant kernels

If we consider a positive definite function K(s − t) and

define, in the Fourier domain, the scalar product

〈f(s), g(s)〉K ≡ 1

2π

∫

f̃(ω)g̃∗(ω)

K̃(ω)
dω,

the subspace HK of L2 of the functions f for which

‖f‖2
K =

1

2π

∫ |f̃(ω)|2
K̃(ω)

dω < +∞.

is a RKHS.



Reproducing property

The reproducing property can be easily verified. Taking

the product 〈K(s − t), f(s)〉K gives

〈K(s − t), f(s)〉K ≡ 1

2π

∫

K̃(ω)f̃∗(ω)e−jωt

K̃(ω)
dω = f(t).

Note that the Fourier domain is natural for shift invariant

kernels.



Regularizers

In the regularization formulation of radial basis functions

or SVMs, the regularizers induced by the previous RKHS

norm have thus the form

‖f‖2
K =

1

2π

∫ |f̃(ω)|2
K̃(ω)

dω < +∞.

defined via the Fourier transform of the kernel K. They are

called smoothness functionals for reasons that will become

even more obvious.



Examples of smoothness functionals, i.e.
RKHS norms, in the Fourier domain

Consider

Φ1[f ] =

∫ +∞

−∞
|f ′(x)|2dx =

1

2π

∫

ω2|f̃(ω)|2dω

Φ2[f ] =

∫ +∞

−∞
|f ′′(x)|2dx =

1

2π

∫

ω4|f̃(ω)|2dω



Examples of smoothness functionals, i.e.
RKHS norms, in the Fourier domain (cont.)

Note again that both functionals are of the form

Φ[f ] =
1

2π

∫ |f̃(ω)|2
K̃(ω)

dω = |f |2K

for some positive, symmetric function K̃(ω) decreasing to

zero at infinity. In particular, we have

• K̃(ω) = 1/ω2 for Φ1,

• K̃(ω) = 1/ω4 for Φ2.



Examples of smoothness functionals, i.e.
RKHS norms, in the Fourier domain (cont.)

Considering the FT in the distribution sense we have

K(x) = −|x|/2 ⇐⇒ K̃(ω) = 1/ω2

K(x) = −|x|3/12 ⇐⇒ K̃(ω) = 1/ω4

For both kernels, the singularity of the FT for ω = 0 is

due to the seminorm property and, as we will see later, to

the fact that the kernel is only conditionally positive defi-

nite. Notice that these kernels are symmetric and positive

definite (therefore) with a real, positive Fourier transform.



Other examples of kernel functions

Other possible kernel functions are, for example,

K(x) = e−x2/2σ2 ⇐⇒ K̃(ω) = e−ω2σ2/2

K(x) =
1

2
e−γ|x| ⇐⇒ K̃(ω) =

1

1 + ω2

K(x) = sin(Ωx)/(πx) ⇐⇒ K̃(ω) = U(ω + Ω) − U(ω − Ω).

Note that all these are Fourier pairs in the ordinary sense.



Corresponding hypothesis spaces

• As it can easily be seen through power series expansion,

the hypothesis space for the Gaussian kernel consists of

the set of square integrable functions whose derivatives of

all orders are square integrable.

• The hypothesis space of the kernel

K(x) = 1/2e−γ|x|

consists of the square integrable functions whose first deriva-

tive is square integrable (Sobolev space).

• The hypothesis space of the kernel

K = sin(Ωx)/(πx)

is the space of band-limited functions whose FT vanishes

for |ω| > Ω.



The representer theorem on unbounded
domains for shift invariant kernels

We are now ready to state an important result (Duchon, 1977; Meinguet,

1979; Wahba, 1977; Madych and Nelson, 1990; Poggio and Girosi,

1989; Girosi, 1992)

Theorem: Let K̃(ω) be the FT (in the ordinary sense)

of a kernel function K(x). The function fλ minimizing the

functional

1

`

∑̀

i=1

(yi − f(xi))
2 + λ

1

2π

∫ |f̃(ω)|2
K̃(ω)

dω

has the form

fλ(x) =
∑̀

i=1

αiK(x − xi)

for some suitable values of the coefficients αi, i = 1, ..., `.

The proof is in Appendix 1 of this class.



RKHS and smoothness functionals

Summing up, smoothness functionals can be seen as con-

trolling the norm of functions in some RKHS.

These functionals can be built directly in the original space

and amounts to finding a positive definite function inducing

an appropriate norm in the space.

With some care, the analysis can be extended to the case

in which the function is only conditionally positive definite.



Conditionally positive definite functions

Let r = ‖x‖ with x ∈ IRn. A continuous function K = K(r)

is conditionally (strictly) positive definite of order m on

IRn, if and only if for any distinct points t1, t2, ..., t` ∈ IRn

and scalars c1, c2, ..., c` such that
∑`

i=1 cip(ti) = 0 for all

p ∈ πm−1(IRn), the quadratic form

∑̀

i=1

∑̀

j=1

cicjK(‖ti − tj‖)

is (positive) nonnegative.

K(x) = − |x|2m−1

2m(2m − 1)
→ K̃(ω) = 1/ω2m

is an example of conditionally positive definite function

of order m (Madych and Nelson, 1990).



Norms and seminorms

If K is a conditionally positive definite function of order m,

then

Φ[f ] =
1

2π

∫ +∞

−∞

|f̃(ω)|2
K̃(ω)

is a seminorm whose null space is the set of polynomials

of degree m − 1.

If K is strictly positive definite, then Φ is a norm.

(Madych and Nelson, 1990)



Computation of the coefficients

For a positive definite kernel, we have shown that

fλ(x) =
∑̀

i=1

αiK(x, xi).

The coefficients αi can be found by solving the linear sys-

tem

(K + `λI)α = y.

with Kij = K(xi, xj), i, j = 1,2, ..., `,

α = (α1, α2, ..., α`),

y = (y1, y2, ..., y`) and

I the ` × ` identity matrix.



Computation of the coefficients (cont.)

For a conditionally positive definite kernel of order m, it

can be shown that

fλ(x) =
∑̀

i=1

αiK(x, xi) +
m−1
∑

k=1

dkγk(x),

where the coefficients α and d = (d1, d2, ..., dm) are found

by solving the linear system

(K + `λI)α + Γ>d = y

Γα = 0.

with

Γik = γk(xi).



Example 1: 1-D Linear Splines (again)

‖f‖2
K =

∫

|f ′(x)|2dx =
1

2π

∫

ω2|f̃(ω)|2dω

K̃(ω) =
1

ω2

K(x − y) ∝ |x − y|

f(x) =
∑̀

i=1

αi|x − xi| + d1.

The solution is a piecewise linear polynomial.



Example 2: 1-D Cubic Splines

‖f‖2
K = Φ[f ] =

∫

|f ′′(x)|2dx =
1

2π

∫

ω4|f̃(ω)|2dω

K̃(ω) =
1

ω4

K(x − y) ∝ |x − y|3

f(x) =
∑̀

i=1

αi|x − xi|3 + d2x + d1.

The solution is a piecewise cubic polynomial.



Example 3: 2-D Thin Plate Splines

‖f‖2
K = Φ[f ] =

∫ ∫

dx1dx2

(

(

∂2f
∂x2

1

)2

+ 2

(

∂2f
∂x1∂x2

)2

+

(

∂2f
∂x2

2

)2
)

‖f‖2
K = Φ[f ] =

1

(2π)2

∫ ∫

dωω ‖ωω‖4|f̃(ωω)|2

K̃(ωω) =
1

‖ωω‖4

K(x) ∝ ‖x‖2 ln ‖x‖

f(x) =
∑̀

i=1

αi‖x − xi‖2 ln ‖x − xi‖ + d2 · x + d1



Notes on stabilizers and splines

If the stabilizer is |Pf‖2 = ‖Dnf‖2 where Dn is derivative

of order n then the null space of the stabilizer is the space

of polynomes of order n − 1. The kernel – and therefore

the order of the splines – is determined by the degree of

|Pf‖2: for the n derivative the order is 2n. Furthermore,

the kernel corresponding to D2n is |x|2n−1. Thus for n = 1

one has |Pf‖2 = ‖D1f‖2 with a null space of constants and

a kernel |x|; for n = 2 one has |Pf‖2 = ‖D2f‖2 with a null

space of linear functions and a kernel |x|3.



Example 4: Gaussian RBFs

‖f‖2
K = Φ[f ] =

1

2π

∫

dωω e‖ωω‖2σ2/2|f̃(ωω)|2

K̃(ωω) = e−‖ω‖2σ2/2

K(x) = e−‖x‖2/2σ2

f(x) =
∑̀

i=1

αie
−‖x−xi‖2/2σ2



Example 5: Radial Basis Functions

Define r = ‖x‖, x ∈ IRn.

K(r) = e−r2/2σ2
Gaussian

K(r) =
√

r2 + c2 multiquadric

K(r) = 1√
c2+r2

inverse multiquadric

K(r) = r2m−n ln r multivariate splines (n even)

K(r) = r2m−n multivariate splines (n odd)



G(r)=exp(-r^2)



G(r)=r^2 ln(r)



Frames

A family of functions (φj)j∈J in an Hilbert space

H is called a frame if there exist 0 < A and A ≤
B < ∞ so that, for all f ∈ H:

A‖f‖2 ≤
∑

j∈J

|〈f, φj〉|2 ≤ B‖f‖2

We call A and B the frame bounds.



Tight frames

If the frame bounds A and B are such that A = B then

the frame is a tight frame.

For a tight frame we have

f(x) =
1

A

∑

j∈J

〈f, φj〉φj(x)

If A = 1 the frame is an orthonormal basis.



Frame Operator

Our goal is to find a “reconstruction” formula, that allows

us to reconstruct f from its projection on the frame.

We need to introduce the frame operator:

F : H → `2

such that

(Ff)j = 〈f, φj〉

(remember that `2 is the Hilbert space of square summable

sequences).



Adjoint of the Frame Operator

The adjoint operator F ∗ is the operator that satisfies:

〈F ∗c, f〉 = 〈c, Ff〉 =
∑

j∈J

cj〈f, φj〉

and therefore:

F ∗c =
∑

j∈J

cjφj(x)



The Dual Frame

If (F ∗F )−1 exists, then the frame is said to be a Riesz

frame with linearly independent φ. For a Riesz frame, ap-

plying the operator (F ∗F )−1 to the frame functions φj gives

another set of basis functions:

φ̃j = (F ∗F )−1φj

The family of functions
(

φ̃j

)

j∈J
is a frame, with frame

constants B−1 and A−1.

B−1‖f‖2 ≤
∑

j∈J

|〈f, φ̃j〉|2 ≤ A−1‖f‖2

The frame and dual frames are biorthogonal

〈φ̃j, φi〉 = δi,j.



Frame example

The set

φ1 = (0,1); φ2 = (−1,0); φ3 = (
√

2/2,−
√

2/2)

is a frame in IR2, because for any v ∈ IR2 we have

‖v‖2 ≤
3
∑

j=1

(v · φj)
2 ≤ 2‖v‖2

Thus, A = 1 and B = 2.

F =







0 1
−1 0√
2/2 −

√
2/2






.

F ∗ = F>



Frame example (dual frames)

F ∗F =

(

3/2 −1/2
−1/2 3/2

)

and

(F ∗F )−1 =
1

2

(

3/2 1/2
1/2 3/2

)

.

Thus

φ̃1 = (1/4,3/4), φ̃2 = (−3/4,−1/4),

φ̃3 = (
√

2/4,−
√

2/4).



Biorthogonality

If a set of frames φ̃j and φj are biorthogonal then

〈φi, φ̃j〉 = 〈φi, ((F
∗F )−1Φ)j〉 = δi,j,

or

(Φ, (F ∗F )−1Φ) = Id,

since

〈Φ, (F ∗F )−1Φ〉 = ΦTΦ(F ∗F )−1,

in operator notation this can be written

ΦTΦ(F ∗F )−1 = (F ∗F )(F ∗F )−1 = Id.



Reconstruction Formula for Frames

The biorthogonality due to the frame operator and its ad-

joint results in the following reconstruction

∑

j∈J

〈f, φj〉φ̃j = f =
∑

j∈J

〈f, φ̃j〉φj

Therefore f can be reconstructed from its frame coef-

ficients if the dual frame is used for the reconstruction

(frame and dual frame can also be exchanged).



RKHS and Frames

Previously we looked at a RKHS spanned by a space of

functions φp(s) where

HK = {f | f(s) =
∞
∑

p=1

cpφp(s)}.

The functions {φp(s)}∞p=1 are now a frame in the RKHS

rather than the eigenvectors of an integral equation.

One gets the following analog of ”Mercer’s” theorem

K(s, t) =
∞
∑

i=1

φ̃i(s)φi(t),

where {φi(s)}∞i=1 and {φ̃i(s)}∞i=1 are the frames and dual

frames.



RKHS and Frames (Consistency)

We can write

f(x) =
N
∑

j=1

cjK(xj, x)

=
N
∑

j=1

cj

∞
∑

p=1

φ̃p(xj)φp(x)

=
∞
∑

p=1





N
∑

j=1

cjφ̃p(xj)



φp(x)

=
∞
∑

p=1

dpφp(x),

where dp =
∑N

j=1 cjφ̃p(xj).



Constructing a RKHS from frames

Let {φn}L
n=1 be a finite set of non-zero functions of a

Hilbert Space H so that:

∀n ||φn|| < ∞
and

∀x |φn(x)| ≤ M.

Let H be the set of functions:

HK = {f | f(s) =
L
∑

n=1

cnφn(s)}.

〈HK , 〈·, ·〉K〉 is a RKHS and the Reproducing Kernel is

K(s, t) =
L
∑

n=1

φ̃n(s)φn(t).



Symmetry of the Kernel

It is not immediately obvious that the Kernel

K(s, t) =
L
∑

n=1

φ̃n(s)φn(t),

is symmetric because in general φ̃n(t) 6= φn(t).

By the reproducing property

f(x) = 〈f(·), K(·, t)〉K = 〈f(·), K(s, ·)〉K,

so

0 = 〈f(·), K(·, t) − K(s, ·)〉K
and

K(s, t) = K(t, s).



The Frame operator and the evaluation
functional

For any function f ∈ H

〈F ∗FK, f〉 = f(x),

or

〈K, f〉K = f(x),

so the evaluation functional can be written in terms of the

frame operator.



Appendix 1: proof of the representer
theorem

We first rewrite the functional in term of the FT f̃ and

using property 1 to obtain

∑̀

i=1

(

yi −
1

2π

∫

f̃(ω)ejωxidω

)2

+ λ
1

2π

∫

f̃(−ω)f̃(ω)

K̃(ω)
dω.

Taking the functional derivative w.r.t f̃(ξ) gives

−1

π

∑̀

i=1

(yi − f(xi))

∫ Df̃(ω)

Df̃(ξ)
ejωxidω +

2

2π
λ

∫

f̃(−ω)

K̃(ω)

Df̃(ω)

Df̃(ξ)
dω =

−1

π

∑̀

i=1

(yi − f(xi))

∫

δ(ω − ξ)ejωxidω +
1

π
λ

∫

f̃(−ω)

K̃(ω)
δ(ω − ξ)dω.

From the definition of δ we have

−1

π

∑̀

i=1

(yi − f(xi))e
jξxi +

1

π
λ

f̃(−ξ)

K̃(ξ)



Proof (cont.)

Equating the derivative to zero and changing the sign of ξ

we find

f̃λ(ξ) = K̃(ξ)
∑̀

i=1

yi − f(xi)

λ
e−jξxi.

Defining the coefficients

αi =
yi − f(xi)

λ
,

taking the inverse FT and using property 2, we finally ob-

tain

fλ(x) =
∑̀

i=1

αiK(x − xi).



Appendix 2: A second route for the
extension to unbounded domain:

Evaluation functionals

As we have seen already, a more general way to introduce

RKHS and derive its properties (which includes what we

have seen so far as special cases and does not require the

analysis of the spectrum of the kernel function) depends on

the fundamental assumption that in the considered space

all the linear evaluation functionals for each f are contin-

uous and bounded.

A linear evaluation functional is a functional Ft that eval-

uates each function in the space at the point t, or

Ft[f ] = f(t).



Appendix 2: Continuous and bounded
functionals

In a normed space a linear functional is continuous if and

only if it is bounded on the unit sphere.

The norm of a functional F is given by

‖F‖ = sup
‖f‖≤1

|F[f ]|



Appendix 2: Example in infinite dimensional
spaces

In C[a, b] (with the sup norm) the linear evaluation func-

tional

δt[f ] = f(t)

is continuous because

‖δt[f ]‖ ≤ ‖f‖.

Clearly, its norm is ‖δt[f ]‖ = 1.



Appendix 2: RKHS: a reminder

Given a Hilbert space with the property that all the linear

evaluation functionals for each function f are continuous

and bounded, through Riesz–Fisher representation theo-

rem it can be proven that one can always find a positive

definition function K(s, t) with the reproducing property

f(t) = 〈K(s, t), f(s)〉K.



Appendix 3: Example: bandlimited
functions again

We met the smoothness functional

Φ[f ] =
1

2π

∫ +Ω

−Ω
|f̃(ω)|2dω

induced by the positive definite function

K(s − t) =
sin(Ω(s − t))

π(s − t)

whose Fourier Transform equals 1 in the interval [−Ω,Ω]

and 0 otherwise. The space of functions identified by this

smoothness functionals, the set of Ω-bandlimited func-

tions, can be seen as RKHS.



Appendix 3: Evaluation functional for
bandlimited functions

In agreement with the correspondence of above, from the

convolution theorem it is easy to see that all Ω-bandlimited

functions are eigenfunctions of the integral equation

∫

sin(Ω(s − t))

πt
f(s)ds = λf(t)

with 1 as unique eigenvalue. From the same equation

and the fact the kernel does not appear explicitly in the

definition of the norm of f , we see that the evaluation

functional for each fixed t can be written as

Ft[f(s)] =
∫

sin(Ω(s − t))

πt
f(s)ds = f(t).



Appendix 3: The Gaussian example

In general, the evaluation functionals are not easy to write.

In the Gaussian case, for example, we know how to write

the evaluation functional for each fixed t in the Fourier

domain,

〈f(s), e−(s−t)2/2σ2〉K =
1

2π

∫ ∞

−∞

f̃(ω)e−ω2σ2/2ejωt

e−ω2σ2/2
dω = f(t),

but not in the original domain.



Appendix 4: Another interpretation:
Feature Space

Another interpretation of the kernel is that one maps into
a higher dimensional space called a feature space (Φ : x →
Φ(x)). The kernel is simply an inner product in the feature
space.

The normalized bases in this higher dimensional space are
{

1
√

µ1
φ1, ..,

1
√

µN
φN

}

where N is the number of eigenfunctions (possibly infinite)
in the series expansion of the kernel.

So the inner product between two points mapped into fea-
ture space is

K(x, y) = 〈Φ(x), Φ(y)〉 =
N
∑

p=1

cpdp

µp
.



Representer Theorem (revisited)

Theorem. The solution to the Tikhonov regularization

problem

min
f∈H

1

`

∑̀

i=1

V (yi, f(xi)) + λ‖f‖2K

can be written in the form

f(x) =
∑̀

i=1

ciK(x, xi).



Representer Theorem Proof II,
Preliminaries

Instead of writing

f(x) =
∑̀

i=1

aiK(x, xi),

we can write

f =
∑̀

i=1

aiΦ(xi).

With this notation,

f(x) = 〈f,Φ(x)〉 =

〈

∑̀

i=1

aiΦ(xi),Φ(x)

〉

=
∑̀

i=1

aiK(x, xi).



Representer Theorem Proof II, Part 1

(Schölkopf et. al 2001) Suppose that we cannot write the

solution to a Tikhonov problem in the form

f =
∑̀

i=1

aiΦ(xi).

Then, clearly, we can write it in the form

f =
∑̀

i=1

aiΦ(xi) + v,

where v satisfies

〈v,Φ(xi)〉 = 0

for all points in the training set.



Representer Theorem Proof II, Part 2

Applying f to an arbitrary training point xj shows that

f(xj) = 〈f,Φ(xj)〉 =

〈

∑̀

i=1

aiΦ(xi) + v,Φ(xj)

〉

=

〈

∑̀

i=1

aiΦ(xi),Φ(xj)

〉

.

Therefore, the choice of v has no effect on f(xj) or on

∑̀

i=1

V (yi, f(xi)).



Representer Theorem Proof II, Part 3

Now, let’s consider ‖f‖2K:

‖f‖2K = ‖
∑̀

i=1

aiΦ(xi) + v‖2K

= ‖
∑̀

i=1

aiΦ(xi)‖2K + ‖v‖2K

≥ ‖
∑̀

i=1

aiΦ(xi)‖2K .



Representer Theorem Proof II, Part 4

Given a Tikhonov regularization problem

min
f∈H

1

`

∑̀

i=1

V (yi, f(xi)) + λ‖f‖2K ,

we write the solution in the form:

f(x) =
∑̀

i=1

aiΦ(xi) + v,

where v satisfies the orthogonality condition discussed above.

Suppose v is not equal to 0. Consider the new function

f2(x) =
∑̀

i=1

aiΦ(xi).

Then V (yi, f(xi)) = V (yi, f2(xi)) for all training points, but

‖f‖2K > ‖f2‖2K, contradicting our assumption that f was

optimal.



Representer Theorem (remarks)

This second proof allows for cross-talk between the empir-

ical terms, and a monotonic function g on the complexity

term; using the same proof, the solution to

min
f∈H

h





∑̀

i=1

V (yi, f(xi))



+ g(‖f‖2K)

has the same form, where h is arbitrary and g is monoton-

ically increasing.


