Leave-one-out approximations
9.520 Class 20, 21 April 2004

Sayan Mukherjee

Plan

Cross-validation

Why the leave-one-out estimate is almost unbiased 7

Generalized approximate cross-validation

Perceptron learning algorithm

eave-one-out bound for kernel machines (no b)

Plan

Leave-one-out bound for kernel machines (with b)

Span bound

Leave-one-out bound for SVMs with b

Worst case analysis of leave-one-out error

About this class

We introduce the idea of cross-validation, leave-one-
out in its extreme form. We show that the leave-one-
out estimate is almost unbiased. We then show a series
of approximations and bounds on the leave-one-out er-
ror that are used for computational efficiency. First
this is shown for least-squares loss then for the SVM
loss function. We close by reporting in a worst case
analysis the leave-one-out error is not a significantly
better estimate of expected error than is the training
error.

Cross-validation

The set S = {(x1,v1),---, (Xy,yp)} has caridinality £.

Theset (S,z) = {(x1,¥1), - (X¢, Yp), (Xp1,ye41) } has carid-
inality ¢+ 1.

An algorithm is a mapping from S — fg. We would like to
measure the generalization error.

Cross-validation is one approach to do this. Use ¢ —p
samples to find the function fq,. Measure the error rate
on the remaining p samples

1
e1 == > V(fg—p(xi),ui).

P icsp

Repeat this procedure N times and compute

Hopefully e is a good measure of generalization error of

fs-

The leave-one-out error is almost unbiased

For a function fg

Mfs) = [V(g(,)dP(x,y)

/
LIS] = > V(fei(x), i)
=1

Theorem Luntz-Brailovsky
The leave-one-out estimator is almost unbiased

1
E—I——lES’Zﬁ[S’ z] = Egl|fs].

The leave-one-out error is almost unbiased (proof)

1
—I
(+1

S,Z‘C[Sa Z]

41
1
H—l/ZV(f(S,Z)Z(X@-),y@-)dP(X1,y1)---dP(Xe+17Z/£+1)
i=1
1 041
1 (V(fes.00 (%), y)dP (xi, i)
(41 /;

dP(x1,y1)...dP(Xi-1, ¥i-1)dP(Xi+1, Yi+1) ---dP(Xe41, Yot+1)
41
1

H—lES’Z ; V(f(S,Z)i(Xi)7 yz) — IESI[fS]

Computing the leave-one-error is in general
expensive

In general to compute the leave-one-out error one needs
to train on ¢ training sets of size ¢ — 1. This can take
alot of time. The following slides show how one can either

upper-bound or approximate the leave-one-out error using
a function trained on all £ samples.

Leave-one-out cross-validation

Given the variational problem

min ch(xo vi)? + M| fl%-

We known the solution has the form

0
fx) =) aK(x,x%;),
i=1

where
c= (K+ M) 1y.

If we call Q = (K + MI)~1 then the leave-out-out error is

1. 1 & [y — fe(x)\?
=3 3 (M)

1=1

Leave-one-out cross-validation (proof)

We define the vector y* where 7 = y; if j 4 and yf =
fsi(Xz')-

We can show

¢
foi(xi) = > Qijy;-
=1

J
Now
¢
foi(X) —yi = Qijy; — Vi
j=1
=) Qijyi + Qiifgi(xi) — y;
J7F1

.

J

¢
= Qijy; — i + Qui(fgi(x:) — i)
—1

So

Leave-one-out cross-validation (proof)

= fo(x;) —yi + Qui(fqi(x:) — v;).

v — fs(x;)
1-Qi

v — fqi(X;) =

Generalized approximate cross-validation

To compute the cross-validation error we need to invert
the matrix K 4+ /\I which can be expensive to compute.

An approximation to the cross vaidation error is

136 (g — fs(x4))?
¢ (1 —¢1trQ)2

1
—L]|S] =~
C[S]

We can compute the trace of Q from the eigenvalues, u;,
of K + /A1

14
trQ = Z u,é_l.
1=1

Perceptron mistake bound

Assume we are given a data set

{(Xla yl)a ey (Xea yf)}a

with x; € R" and y; = {—1,1}, which is linearly separable.
This means that there exist w € IR" such that

(WTXi)yi >0, :1=1,..0¢

Let w be the unit normal vector of a hyperplane separating
the ¢ data with no errors with distance of the closest point
IS equal to p, therefore,

yWw'x; >p>0, i=1,..4.

Perceptron mistake bound

The perceptron learning rule is as follows:

w® = 0
w1 w® 4 yix; if yi(xlw®) <0
w1 w(® otherwise.

Theorem: A perceptron can separate a linearly separable
data set in a finite number of steps . Moreover, if R is
the bound on the norm of the training vectors and p the
distance of the closest point from a separating hyperplane,
we have

Proof

After = updates we can write
wi = 3" diyix;

where d; denotes the number of times in which x; was mis-
classified over training. If the points are drawn randomly
some of the d; could be zero but we surely have

ZdiZT.

Now, since [|[w| = 1, taking the dot product between w
and w(™ we find the following bound

W > W TwOT| = |3 dyx] %] > 7.

Therefore, ||w(?| is bounded from below by a function
growing linearly with 7.

Proof (cont.)

Expanding the square of ||[w(m+D|| we find
W2 = O 2 + 2y w

Now, for all ¢ = 1,...,¢ ||x;|| < R and the cross product is
not positive (because the i-th point has been misclassified).
Therefore, at each step in which a correction takes place,
the square of the norm of w(7) does not increase by more

than RZ2.

Proof (cont.)

Therefore, after T steps ||[w(™]||? is bounded from above by
a function growing linearly with r, or

Iw™|? < TR,
Combining the two bounds we find
m?p” < |WD|? < TR?
which is a contradiction unless

R2
TS?

Bounding the leave-one-out error

Note that the number of errors in the leave-one-out proce-
dure has to be smaller than the the number of corrections
T the perceptron makes so
/4 2
1 1R
IS[fSi] — - Z 9(—yz‘f5i(xz‘)) < Z?

¢ 1=1

One can apply this bound to a SVM that is separable and
has no b term.

Bound based upon number of support vectors

The leave-one-out error of a SVM can be bound by the
number of support vectors N

1 N
~L[S] < —.
/ ;

Since the SVM solution has the form

N
f(@) =) K(x,x;),
i=1

when we remove a nonsupport vector nothing changes so
leaving out that point would have no effect on accuracy.
If we remove a support vector we simply assume that an
error is made.

Bound for SVMs without a b term

For a SVM without a b term trained on ¢ points the solution
has the form

(
f(x) =) K(x,x;).
i=1

For such an algorithm

/¢ 14
D 0Cuifg(x)) < 5 D 0(-uilFs () — e (xi %)),
1=1 1=1

or
fs(x) — i K(x4,%) = > ¢;K(x4,%5)
J7Ft
foi(xi) >) ¢;K(x4,%;)
J7F1

0(—yifqi(x:)) < 0(—y; Y c¢;K(x;,%,)).
JjF=i

Bound for SVMs without a b term (proof)

The dual maximization problem for the leave-one-out SVM is

1
max Jo—i(Ae—i) = > - 5 > yiykoonK (xi,%;).
JF Jk#Ei

If we knew the optimal o for the £ point problem we could solve the
following maximization problem to compute the remaining Aj_,

max Jo(Ae—i) = Jo-i(Ne-i) — iy Z oy K (Xi, X;).
j~i

Bound for SVMs without a b term (proof)
We know the following two facts
JN_) = Je(Ne—i)
Jo—1(N_) < Jem1(N—y)

where A;_. are the optimal £ — ¢ paramaters looking at all £ points and
N\y_; are the optimal £ — 1 parameters looking at the ¢ — 1 points.

We can now state the following

Toi(N2) — oy >y K (xi,%x5) > Jpmi(Asi) — afyi Y oy K (xi, x5)

s =i
;Y Z Ly K (xi,x5) > oy Z oy K (xi,%5) + Jo—i(Aj_;)
i =i
—Jo—i(N\o_;)
> afyi) oy K (xi,%;).
JFi

So
ayi Yoy K (xi, %) > oy Yy odyiK (i, x;)
po i

Z CjK(XZ', Xj).
JF

fsi(x4)

Vv

Bound for SVMs with a b term

For a SVM with a b term trained on ¢ points the solution
has the form

¢
f(x) =) ¢K(x,x;)+0.

=1

For such an algorithm

1 ¢ |
7 N 0(—yifei(x:)) < |{i: 20;R? + & > 1},
1=1
where R > K(x,x) — K(x,z) for all x,z.

Here the dual maximization problem is

1
max Jo—i(Ne—i) =) o — 5 > yjypojor K (x4, %),
b jFEi JikFi
subject to > j#iyjo; =0 and 0 < a < C.

Span bound

If the set of support vectors remain unchanged under the
leave-one-out procedure then

yi(fo(xi) — foi(x:)) = ;S?,

where S; is the distance between the point ®(x;) and the
set €2;

From this it can be shown

1 L 1 4 5
72 0wifei(xi)) = 3 0(0iSE — 1),
1=1

=1

Worst case analysis for leave-one-out estimator

For certain types of algorithms, k-Nearest Neighbors for ex-
ample, it was shown that the deviation between the leave-

one-out estimator and the expected error is O <\/%> but

one cannot bound the deviation between to empirical error
and expeceted error.

This prompted the following question about VC classes.
Is the leave-one-out estimator a significantly better esti-
mate of the expected error than the empirical error 7

A negative result

For VC classes the leave-one-out estimate is not significantly better
than the training error as an estimate of the expected error.

For a function class with VC dimension d

Es[I[fs] — Is[fs]] < © \/ (n%+1D+Ing + M.

n

For a function class with VC dimension d an implication of stability
results is that

Es [%iV(sz,zi) —Is[fs]| < © /\/d(ln T+ + M,
=1 |
1 ' / d(in 22 +1)+|n—
Eg [;ZV(]CS”,Z@') —I[fs]|] < © \/ + M.
i=1 J

