Class 17: Rademacher Averages and Symmetrization

Alexander Rakhlin

This class is based largely on Shahar Mendelson’s “A few notes on Statistical Learning Theory” [1]. Students are encouraged to read this paper.

Let \mathcal{F} be a class of functions. Then $(Z_i)_{i\in I}$ is a random process indexed by \mathcal{F} if $Z_i(f)$ is a random variable for all i.

As before, μ is a probability measure on Ω, and data $x_1, \ldots, x_n \sim \mu$. Then μ_n is the empirical measure supported on x_1, \ldots, x_n: $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$. Define $Z_i(\cdot) = (\delta_{x_i} - \mu)(\cdot)$, i.e. $Z_i(f) = f(x_i) - \mathbb{E}\mu(f)$. Then Z_1, \ldots, Z_n i.i.d. process with 0 mean.

In the previous lectures we looked at the quantity

$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E}f \right|. \quad (1)$$

Note that this can be written as $n \sup_{f \in \mathcal{F}} |\sum_{i=1}^n Z_i(f)|$.

Recall that the difficulty with (1) is that we do not know μ and therefore cannot calculate $\mathbb{E}f$. We saw that the classical approach of covering \mathcal{F} and using the Union Bound was too loose.

Symmetrization idea: If $\frac{1}{n} \sum_{i=1}^n f(x_i)$ is close to $\mathbb{E}f$ for various data x_1, \ldots, x_n, then $\frac{1}{n} \sum_{i=1}^n f(x_i)$ is close to $\frac{1}{n} \sum_{i=1}^n f(x'_i)$, the empirical average on x'_1, \ldots, x'_n (independent copy of x_1, \ldots, x_n). Therefore, if the two empirical averages are far from each other, then empirical error is far from expected error.

Now consider the following:

Example: Fix one function f. Let $\epsilon_1, \ldots, \epsilon_n$ be i.i.d. Rademacher random variables (taking on values 0 or 1 with probability 1/2). Then

$$\mathbb{P} \left[\sum_{i=1}^n (f(x_i) - f(x'_i)) \geq t \right] = \mathbb{P} \left[\sum_{i=1}^n \epsilon_i (f(x_i) - f(x'_i)) \geq t \right]$$

$$\leq \mathbb{P} \left[\sum_{i=1}^n \epsilon_i f(x_i) \geq t/2 \right] + \mathbb{P} \left[\sum_{i=1}^n \epsilon_i f(x'_i) \geq t/2 \right]$$

$$= 2 \mathbb{P} \left[\sum_{i=1}^n \epsilon_i f(x_i) \geq t/2 \right]$$

1
Together with the Symmetrization idea, this suggests that controlling
\(\mathbb{P} \left[| \sum_{i=1}^{n} \epsilon_i f(x_i) | \geq t/2 \right] \) is enough to control \(\mathbb{P} \left[\left| \frac{1}{n} \sum_{i=1}^{n} f(x_i) - \mathbb{E} f \right| \geq t \right] \).

Empirical Process:

\[
Z(x_1, ..., x_n) = \sup_{f \in \mathcal{F}} \left[\mathbb{E} f - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \right].
\]

Rademacher Process:

\[
R(x_1, ..., x_n, \epsilon_1, ..., \epsilon_n) = \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i).
\]

\[
\mathbb{E} Z = \mathbb{E}_x \sup_{f \in \mathcal{F}} \left[\mathbb{E} f - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \right]
= \mathbb{E}_x \sup_{f \in \mathcal{F}} \left[\mathbb{E}_{x'} \left(\frac{1}{n} \sum_{i=1}^{n} f(x'_i) \right) - \frac{1}{n} \sum_{i=1}^{n} f(x_i) \right]
\leq \mathbb{E}_{x,x'} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(x'_i) - f(x_i))
= \mathbb{E}_{x,x',\epsilon} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i (f(x'_i) - f(x_i))
\leq \mathbb{E}_{x,x',\epsilon} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x'_i) + \mathbb{E}_{x,x',\epsilon} \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} -\epsilon_i f(x_i)
= 2 \mathbb{E} R
\]

As we discussed previously, we would like to bound \(Z \). This will imply “generalization” for any function in \(\mathcal{F} \). The above calculation suggests the following: To control \(Z \), show 1) \(Z \) is concentrated around its mean \(\mathbb{E} Z \), 2) use the above bound \(\mathbb{E} Z \leq \mathbb{E} R \), 3) bound \(\mathbb{E} R \). (Additionally, can show concentration of \(R \) around \(\mathbb{E} R \) and use \(R \) as a data-dependent bound). \(\mathbb{E} R \) is called a Rademacher Average.

An example of 1): Use McDiarmid’s inequality to show concentration of
Z around $\mathbb{E}Z$. Assume $a \leq f(x) \leq b$ for all x and $f \in \mathcal{F}$. Then

$$|Z(x_1, \ldots, x'_i, \ldots, x_n) - Z(x_1, \ldots, x_i, \ldots, x_n)| =$$

$$\sup_{f \in \mathcal{F}} \left| \mathbb{E}f - \frac{1}{n} \sum_{j=1}^{n} f(x_j) + \left(\frac{1}{n} f(x_i) - \frac{1}{n} f(x'_i) \right) \right| \leq \sup_{f \in \mathcal{F}} \left| \mathbb{E}f - \frac{1}{n} \sum_{j=1}^{n} f(x_j) \right| \leq \frac{b - a}{n} = c_i$$

McDiarmid’s inequality then implies that

$$\mathbb{P}(Z - \mathbb{E}Z > t) \leq \exp\left(\frac{-t^2}{2 \sum_{i=1}^{n} \frac{(b-a)^2}{n}} \right) = \exp\left(\frac{-nt^2}{2(b-a)^2} \right)$$

Equivalently, with probability at least $1 - e^{-u}$,

$$Z - \mathbb{E}Z < \frac{1}{\sqrt{n}} \sqrt{2u}(b - a).$$

So, as the number of samples, n, grows, Z becomes more and more concentrated around $\mathbb{E}Z$. Using the symmetrization step,

$$Z \leq \mathbb{E}Z + \frac{1}{\sqrt{n}} \sqrt{2u}(b - a) \leq 2\mathbb{E}R + \frac{1}{\sqrt{n}} \sqrt{2u}(b - a)$$

with probability at least $1 - e^{-u}$. For sharper inequality, see Talagrand’s famous inequality for the suprema of empirical processes.

Why is it easier to bound $\mathbb{E}R$ than $\mathbb{E}Z$? It turns out that $\mathbb{E}R$ has some nice properties (see [1] for more details):

Let \mathcal{F}, \mathcal{G} be classes of real-valued functions. Then for any n,

1. If $\mathcal{F} \subseteq \mathcal{G}$, then $\mathbb{E}R(\mathcal{F}) \leq \mathbb{E}R(\mathcal{G})$

2. $\mathbb{E}R(\mathcal{F}) = \mathbb{E}R(\text{conv}\mathcal{F})$

3. $\forall c \in \mathbb{R}$, $\mathbb{E}R(c\mathcal{F}) = |c|\mathbb{E}R(\mathcal{F})$

4. If $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is L-Lipschitz and $\phi(0) = 0$, then $\mathbb{E}R(\phi(\mathcal{F})) \leq 2L\mathbb{E}R(\mathcal{F})$
5. For RKHS balls, \(c(\sum_{i=1}^{\infty} \lambda_i)^{1/2} \leq \mathbb{E} R(\mathcal{F}_k) \leq C(\sum_{i=1}^{\infty} \lambda_i)^{1/2} \), where \(\lambda_i \)'s are eigenvalues of the corresponding linear operator in the RKHS.

Entropy bounds for Rademacher Averages:

\[
\mathbb{E}_\epsilon R \leq c \frac{1}{\sqrt{n}} \int_0^D \sqrt{\log \mathcal{N}(\epsilon, \mathcal{F}, L_2(\mu_n))} d\epsilon,
\]

where \(\mathcal{N} \) denotes the covering number, as defined in the previous lectures.

The above integral is called the *Dudley integral*.

Example: Let \(\mathcal{F} \) be a class with finite VC-dimension \(V \). Then \(\mathcal{N}(\epsilon, \mathcal{F}, L_2(\mu_n)) \leq \left(\frac{2}{\epsilon} \right)^{kV} \) for some constant \(k \). The Dudley integral above is bounded as

\[
\int_0^1 \sqrt{\log \mathcal{N}(\epsilon, \mathcal{F}, L_2(\mu_n))} d\epsilon \leq \int_0^1 \sqrt{kV \log 2/\epsilon} d\epsilon \\
\leq k' \sqrt{V} \int_0^1 \sqrt{\log 2/\epsilon} d\epsilon \leq k \sqrt{V}.
\]

Therefore, \(\mathbb{E}_\epsilon R \leq k \sqrt{\frac{V}{n}} \) for some constant \(k \).

References