
Class 17: Rademacher Averages and Symmetrization

Alexander Rakhlin

This class is based largely on Shahar Mendelson’s “A few notes on Sta-
tistical Learning Theory” [1]. Students are encouraged to read this paper.

Let F be a class of functions. Then (Zi)i∈I is a random process indexed
by F if Zi(f) is a random variable ∀i.

As before, µ is a probability measure on Ω, and data x1, ..., xn ∼ µ. Then
µn is the empirical measure supported on x1, ..., xn: µn = 1

n

∑n
i=1 δxi

. Define
Zi(·) = (δxi

−µ)(·), i.e. Zi(f) = f(xi)− IEµ(f). Then Z1, ..., Zn i.i.d. process
with 0 mean.

In the previous lectures we looked at the quantity

sup
f∈F

| 1
n

n
∑

i=1

f(xi) − IEf |. (1)

Note that this can be written as n supf∈F |∑n
i=1 Zi(f)|.

Recall that the difficulty with (1) is that we do not know µ and therefore
cannot calculate IEf . We saw that the classical approach of covering F and
using the Union Bound was too loose.

Symmetrization idea: If 1
n

∑n
i=1 f(xi) is close to IEf for various data

x1, ..., xn, then 1
n

∑n
i=1 f(xi) is close to 1

n

∑n
i=1 f(x′

i), the empirical average
on x′

1, ..., x
′
n (independent copy of x1, ..., xn). Therefore, if the two empirical

averarages are far from each other, then empirical error is far from expected
error.

Now consider the following:
Example: Fix one function f . Let ε1, ..., εn be i.i.d. Rademacher random

variables (taking on values 0 or 1 with probability 1/2). Then
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Together with the Symmetrization idea, this suggests that controlling
IP [|∑n

i=1 εif(xi)| ≥ t/2] is enough to control IP
[
∣

∣

1
n
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i=1 f(xi) − IEf

∣

∣ ≥ t
]

.
Empirical Process:

Z(x1, ..., xn) = sup
f∈F

[

IEf − 1

n

n
∑

i=1

f(xi)

]

.

Rademacher Process:

R(x1, ..., xn, ε1, ..., εn) = sup
f∈F

1
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εif(xi).

IEZ = IEx sup
f∈F
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= 2IER

As we discussed previously, we would like to bound Z. This will imply
“generalization” for any function in F . The above calculation suggests the
following: To control Z, show 1) Z is concentrated around its mean IEZ,
2) use the above bound IEZ ≤ IER, 3) bound IER. (additionally, can show
concentration of R around IER and use R as a data-dependent bound). IER
is called a Rademacher Average.

An example of 1): Use McDiarmid’s inequality to show concentration of
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Z around IEZ. Assume a ≤ f(x) ≤ b for all x and f ∈ F . Then

|Z(x1, ..., x
′
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McDiarmid’s inequality then implies that

IP (Z − IEZ > t) ≤ exp

(

−t2

2
∑n

i=1
(b−a)2

n2

)

= exp

( −nt2

2(b − a)2
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Equivalently, with probability at least 1 − e−u,

Z − IEZ <
1√
n

√
2u(b − a).

So, as the number of samples, n, grows, Z becomes more and more con-
centrated around IEZ. Using the symmetrization step,

Z ≤ IEZ +
1√
n

√
2u(b − a) ≤ 2IER +

1√
n

√
2u(b − a)

with probability at least 1 − e−u. For sharper inequality, see Talagrand’s
famous inequality for the suprema of empirical processes.

Why is it easier to bound IER than IEZ? It turns out that IER has some
nice properties (see [1] for more details):

Let F , G be classes of real-valued functions. Then for any n,

1. If F ⊆ G, then IER(F) ≤ IER(G)

2. IER(F) = IER(convF)

3. ∀c ∈ IR, IER(cF) = |c|IER(F)

4. If φ : IR → IR is L-Lipschitz and φ(0) = 0, then IER(φ(F)) ≤
2LIER(F)
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5. For RKHS balls, c(
∑

∞

i=1 λi)
1/2 ≤ IER(Fk) ≤ C(

∑

∞

i=1 λi)
1/2, where λi’s

are eigenvalues of the corresponding linear operator in the RKHS.

Entropy bounds for Rademacher Averages:

IEεR ≤ c
1√
n

∫ D

0

√

logN (ε,F , L2(µn))dε,

where N denotes the covering number, as defined in the previous lectures.
The above integral is called the Dudley integral.

Example: Let F be a class with finite VC-dimension V . Then N (ε,F , L2(µn)) ≤
(

2
ε

)kV
for some constant k. The Dudley integral above is bounded as

∫ 1

0

√

logN (ε,F , L2(µn))dε ≤
∫ 1
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√

kV log 2/εdε

≤ k′
√

V

∫ 1

0

√

log 2/εdε ≤ k
√

V .

Therefore, IEεR ≤ k
√

V
n

for some constant k.
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