9.520
Complexity:
U

$\stackrel{\square}{\circ}$
Measures
Plan

- Measuring the complexity of function spaces.
- Definitions of VC dimension and scale sensitive ver-
sions.
- Necessary and sufficient conditions for uniform conver-
gence.
Uniform convergence for classification

For one function we could use the Chernoff bound

$$
P\left\{\left|I[f]-I_{S}[f]\right|>\epsilon\right\}<2 \exp \left(-2 \epsilon^{2} \ell\right) .
$$

Uniform convergence for classification
(cont)

What about if $V(f(x), y)=\Theta(-y f(x))$?

The key result in computing $r(\epsilon)$ was showing that if

then
$r(\epsilon)$
$\leq \epsilon$
$=1$

y)|

function ϵ
For the classification loss
has no effect.
Counting classification functions

An obvious property of $\mathcal{N}^{\mathcal{H}(M)}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)\right)$ is:

$$
\mathcal{N}^{\mathcal{H}(M)}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)\right) \leq 2^{\ell} .
$$

Counting classification functions
Notice that

$$
\mathcal{N}^{\mathcal{H}(M)}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)\right) .
$$

depends on data so we need to take the expectation to
use it

$$
\overline{\mathcal{N}}=\mathbb{E}_{x_{1}, y_{1}, \ldots, x_{\ell}, y_{\ell}} \mathcal{N}^{\mathcal{H}(M)}\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)\right) .
$$

A necessary and sufficient condition

Implementation of different labelings

How Many Labelings?
Sauer's Lemma
If the hypothesis space can separate h points in all possible
(2 2^{h} ways), then $\ell>h$ points can be labeled in

$$
\sum_{i=1}^{h}\binom{\ell}{i}<\left(\frac{e \ell}{h}\right)^{h}
$$

possible ways and

$$
\sum_{i=1}^{h}\binom{\ell}{i}<2^{\ell} .
$$

- There is at least one set of h points that can be
labeled in all possible ways;
- there is no set of $h+1$ points that can be labeled in
all possible ways;

VC dimension of hyperplanes
all the possible labelings not all the possible labelings
VC-dimension $=3$

VC-dimension and free parameters
The VC-dimension is proportional, but not necessarily equal,
to the number of parameters.
- For Multilayer Perceptrons with hard thresholds $h \propto$
$n \operatorname{In} n$ (Maass, 1994);
- For Multilayer perceptrons with standard sigmoid thresh-
olds $h \propto n^{2}$ (Koiran and Sontag, 1995);
- For classification functions of the form $\theta(-y \sin (\alpha x))$
the VC-dimension is infinite;
Empirical covering numbers
Instead of using the sup norm as the metric of our cover
we can use

The empirical covering number $\mathcal{N}\left(\mathcal{H}, r, d_{x_{\ell}}\right)$ is the mini-
mal $m \in \mathbb{N}$ such that there exists m disks in \mathcal{H} with radius
r covering function values at ℓ points.
Empirical covering numbers

A necessary and sufficient condition

V_{γ} dimension and shattering

class 1 if: $V\left(y_{i}, f\left(x_{i}\right)\right) \geq s+\gamma$
class 0 if: $V\left(y_{i}, f\left(x_{i}\right)\right) \leq s-\gamma$
Key result (Alon et al. 93)
Finiteness of the V_{γ} dimension for every $\gamma>0$ is a neces-
sary and sufficient condition for distribution independent
uniform convergence of the ERM method for real-valued
functions.

[^0]

[^0]: (Mendelson and Vershynin 03)
 Compactness of the $L 2$ covering number for every scale $\epsilon>$
 0 is a necessary and sufficient condition for distribution
 independent uniform convergence of the ERM method for
 real-valued functions.

