
Regression and Least-Squares Classification
9.520 Class 04, 17 February 2004

Ryan Rifkin

Plan

• Regression using the square-loss

• Solving square-loss regression

• Computational approaches

• Advantages of a linear kernel

• Classification as regression

• The Rectangular Method

Regression

In regression, we are given a training set (x1, y1), . . . , (x`, y`).

Unlike in classification, the yi are real-valued. The goal is

to learn a function f to predict the y values associated

with new observed x values.

Our Friend Regularization

We pose our regression task as finding the function f that

solves a Tikhonov regularization problem:

f = argmin
f∈H

1

`

∑̀

i=1

V (f(xi), yi) + λ‖f‖2K

To fully specify the problem, we need to choose a loss

function V and a kernel K.

The Square Loss

For regression, a natural choice of loss function is the

square loss V (f(x), y) = (f(x) − y)2.

−3 −2 −1 0 1 2 3

0

1

2

3

4

5

6

7

8

9

y−f(x)

L2
 lo

ss

Substituting In The Square Loss

Using the square loss, our problem becomes

f = argmin
f∈H

1

`

∑̀

i=1

(f(xi) − yi)
2 + λ‖f‖2K .

The Return of the Representer Theorem

Theorem. The solution to the Tikhonov regularization

problem

min
f∈H

1

`

∑̀

i=1

V (yi, f(xi)) + λ‖f‖2K

can be written in the form

f(x) =
∑̀

i=1

ciK(x, xi).

This theorem is exceedingly useful — it says that to solve

the Tikhonov regularization problem, we need only find

the best function of the form f(x) =
∑`

i=1 ciK(x, xi). Put

differently, all we have to do is find the ci.

Applying the Representer Theorem, I

NOTATION ALERT!!! We will use the symbol K to

refer to either the kernel function K OR the `-by-` matrix

K defined via

Kij ≡ K(xi, xj)

Using this definition, consider the output of our function

f(x) =
∑̀

i=1

ciK(x, xi).

at the training point xj:

f(xj) =
∑̀

i=1

K(xi, xj)ci

= (Kc)j

Applying the Representer Theorem, I

Using this notation, we apply the Representer Theorem to

our Tikhonov minimization problem, reformulating it as:

Using the square loss, our problem becomes

f = min
f∈H

1

`
(Kc − y)2 + λ‖f‖2K .

Using the Norm of a “Represented”

Function

Recall that if we have a function

f(x) =
∑̀

i=1

ciK(xi, x),

then we have

||f ||2K = cTKc.

Using the Norm of a “Represented”

Function, II

Substituting in, our Tikhonov minimization problem is now

entirely a problem of finding c:

f = argmin
c∈R`

1

`
(Kc − y)2 + λcT Kc.

Solving the Least Squares Problem, I

We are trying to minimize g(c), where

g(c) =
1

`
(Kc − y)2 + λcTKc

This is a convex, differentiable function of c, so we can

minimize it simply by taking the derivative with respect to

c, then setting this derivative to 0.

∂g(c)

∂c
=

2

`
K(Kc − y) + 2λKc.

Solving the Least Squares Problem, II

Setting the derivative to 0 and playing with some math,

2

`
K(Kc − y) + 2λKc = 0

→ K(Kc) + λ`Kc = Ky

“ → ” (K + λ`I)c = y

→ c = (K + λ`I)−1y

The matrix K + λ`I is positive definite and will be well-

conditioned if λ is not too small.

Least-Squares Regularized Regression

• The matrix (K + λ`I) is guaranteed to be invertible if

λ > 0. As λ → 0, the regularized least-squares solution

goes to the standard Gaussian least-squares solution

which minimizes the empirical loss. As λ → ∞, the

solution goes to f(x) = 0.

• In pratice, we don’t actually invert (K + λ`I), but in-

stead use an algorithm for solving linear systems.

• In order to use this approach, we need to compute

and store the entire kernel matrix K. This makes it

impractical for use with very large training sets.

The Conjugate Gradient Algorithm

The conjugate gradient algorithm is a popular algorithm for

solving positive definite linear systems. For the purposes

of this class, we need to know that CG is an iterative

algorithm. The major operation in CG is multiplying a

vector v by the matrix A. Note that matrix A need not

always be supplied explicitly, we just need some way to

form a product Av.

For “ordinary” positive semidefinite systems, CG will be

competitive with direct methods. CG can be much faster

if there is a way to multiply by A quickly . . .

Aside: A Linear Kernel

Suppose our kernel K is linear:

K(x, y) = x · y.

Then our solution x can be written as

f(x) =
∑

cixi · x

= (
∑

cixi) · x

≡ w · x,

and we can apply our function to new examples in time d

rather than time `d.

This is a general property of Tikhonov regularization with

a linear kernel, not related to the use of the square loss.

Linear Regularized Least-Squares

Regression

We can use the CG algorithm to get a huge savings for

solving regularized least-squares regression with a linear

kernel (K(x1,x2) = x1 · x2). With an arbitrary kernel, we

must form a product Kv explicitly — we multiply a vector

by K. With the linear kernel, we note that K = AAT ,

where A is a matrix with the data points as row vectors.

Using this:

(K + λ`I)v = (AAT + λ`I)v

= A(ATv) + λ`Iv

Cost Analysis of the Linear Approach

Suppose we have ` points in d dimensions. Forming the

kernel matrix K explicitly takes `2d time, and multiplying

a vector by K takes `2 time.

If we use the linear representation, we pay nothing to form

the kernel matrix, and multiplying a vector by K takes 2d`

time.

If d << `, we save approximately a factor of `
2d

per itera-

tion. The memory savings are even more important, as we

cannot store the kernel matrix at all for large training sets,

and if were to recompute the entries of the kernel matrix

as needed, each iteration would cost `2d time.

Sparse Training Data

Also note that if the training data are sparse (they consist

of a large number of dimensions, but the majority of di-

mensions for each point are zero), the cost of multiplying a

vector by K can be written as 2d̄`, where d̄ is the average

number of nonzero entries per data point.

This is often the case for applications relating to text,

where the dimensions will correspond to the words in a

“dictionary”. There may be tens of thousands of words,

but only a few hundred will appear in any given document.

Square-Loss Classification

There is nothing to stop us for using the above algorithm

for classification. By doing so, we are essentially treating

our classification problem as a regression problem with y

values of 1 or -1.

Faster Nonlinear RLS

For a general nonlinear kernel, to solve the Tikhonov prob-

lem as defined, we must begin by computing the entire K

matrix. We will see (soon) that this means that the SVM,

which we will discuss in the next class, is preferable to RLS

for large nonlinear problems.

Is there a way around this?

First Idea: Throw Away Data

Suppose that we throw away all but M of our data points,

where M << `. Then we only need time M2d to form our

new, smaller kernel matrix, and we only need time M2 for

each iteration of CG. Great, isn’t it?

Well, if we have too much data to begin with (say 1,000,000

points in 3 dimensions) this will work just fine. In general,

we will lose accuracy.

Introducing The Rectangular Method

Suppose, instead of throwing away data, we restrict our

hypothesis space further. Instead of allowing functions of

the form

f(x) =
∑̀

i=1

ciK(xi, x),

we only allow

f(x) =
M∑

i=1

ciK(xi, x),

where M << `. In other words, we only allow the first M

points to have non-zero ci. However, we still measure the

loss at all ` points.

More On The Rectangular Method

If we define KMM to be the kernel matrix on just the M

points we’re using to represent our function, and KML to

be the kernel product between those M points and the

remaining L points, we can derive (homework) that the

minimization problem becomes:

(KMLKLM + KMMλ`) = KMLy,

which is again an M-by-M system.

Various authors have reported good results with this or

with similar approaches, although the jury is still out (pos-

sible class project).

