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About this class

Goal To introduce a particularly useful family of hypoth-

esis spaces called Reproducing Kernel Hilbert Spaces

(RKHS) and to derive the general solution of Tikhonov

regularization in RKHS.



Function space

A function space is a space made of functions. Each

function in the space can be thought of as a point. Ex-

amples:

1. C[a, b], the set of all real-valued continuous functions

in the interval [a, b];

2. L1[a, b], the set of all real-valued functions whose ab-

solute value is integrable in the interval [a, b];

3. L2[a, b], the set of all real-valued functions square inte-

grable in the interval [a, b]

Note that the functions in 2 and 3 are not necessarily

continuous.



Normed space

A normed space is a linear (vector) space N in which a

norm is defined. A nonnegative function ‖ · ‖ is a norm iff

∀f, g ∈ N and α ∈ IR

1. ‖f‖ ≥ 0 and ‖f‖ = 0 iff f = 0;

2. ‖f + g‖ ≤ ‖f‖ + ‖g‖;

3. ‖αf‖ = |α| ‖f‖.

Note, if all conditions are satisfied except ‖f‖ = 0 iff f = 0

then the space has a seminorm instead of a norm.



Euclidean space

A Euclidean space is a linear (vector) space E in which a

dot product is defined. A real valued function 〈·, ·〉 is a dot

product iff ∀f, g, h ∈ E and α ∈ IR

1. 〈f, g〉 = 〈g, f〉;

2. 〈f + g, h〉 = 〈f, h〉 + 〈g, h〉 and 〈αf, g〉 = α〈f, g〉;

3. 〈f, f〉 ≥ 0 and 〈f, f〉 = 0 iff f = 0.

In a Euclidean space we can speak of the angle between

vectors and the norm of a vector is
√

〈f, f〉.



Dense

Let A and B be subspaces of some normed (metric) space

R. A is said to be dense in B iff A ⊂ B and B ⊂ Ā.

Example: the set of all rational points is dense in the real

line.

Note: a hypothesis space that is dense in L2 is a desirable

property of many any approximation schemes.



Hilbert space

A Hilbert space is a Euclidean space that is complete,

separable, and generally infinite dimensional.

• A Hilbert space has a countable basis.

L2 and IRn are examples of Hilbert spaces.



Compact spaces

A normed space is compact iff it is totally bounded and

complete.

• A compact space, since it is totally bounded, has a finite

ε-net for any ε > 0.

The large ball contains all functions in the space, for each

function, fi, fj in a small ball, ‖fi − fj‖∞ < ε.



Evaluation functionals

A linear evaluation functional is a linear functional Ft that

evaluates each function in the space at the point t, or

Ft[f ] = f(t)

Ft[f + g] = f(t) + g(t).

The functional is bounded if there exists a M s.t.

|Ft[f ]| = |f(t)| ≤ M‖f‖Hil ∀t

for all f where ‖ · ‖Hil is the norm in the Hilbert space.



Evaluation functionals in Hilbert space

The evaluation functional is not bounded in the familiar

Hilbert space L2([0,1]), no such M exists and in fact ele-

ments of L2([0,1]) are not even defined pointwise.
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Evaluation functionals in Hilbert space

In the following pictures the two functions have the same

norm but they are very different on sets of zero measure
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RKHS

Definition A (real) RKHS is a Hilbert space of real-valued

functions on a compact domain X with the property that

for each t the evaluation functional Ft is a bounded linear

functional.



Positive definite kernels

Let X be some set, for example a subset of IRd or IRd itself.

A kernel is a symmetric function K : X × X → IR.

Definition

A kernel K(t, s) is positive definite (pd) if

n
∑

i,j=1

cicjK(ti, tj) ≥ 0

for any n ∈ IN and choice of t1, ..., tn ∈ X and c1, ..., cn ∈ IR.



Positive definite kernels (cont.)

An equivalent definition could be given in terms of positive

semidefiniteness of the matrix

Kij = K(ti, tj).

A pd kernel is strictly positive definite if for any distinct vec-

tors t1, ..., tn ∈ X the above inequality holds strictly when

the ci are not all zero (in that case the matrix Kij is posi-

tive definite and not just positive semidefinite). Definitions

in the literature are often inconsistent and confusing (es-

pecially the different use for matrices vs. functions).



RKHS and kernels

The following theorem relates kernels and RKHS.

Theorem

a) For every RKHS there exists a unique, positive definite

function called the reproducing kernel (rk)

b) Conversely for every positive definite function K on

X × X there is a unique RKHS on X with K as its rk



Sketch of proof + some important concepts

If H is a RKHS, then for each x ∈ X there exists by the

Riesz representation theorem an element Kx of H (called

representer of evaluation) with the property – called by

Aronszajn – the reproducing property

•Fx[f ] = 〈Kx, f〉K = f(x).

The rk is Kx(t).



Sketch of proof (cont.)

The rk Kx(t) can be thought of as effectively a delta func-

tion for that space but the rk belongs to the Hilbert space.

Kx(t) ⇔ δx(t)

f(x) = 〈Kx(t), f(t)〉K ⇔ f(x) = 〈δx(t), f(t)〉

Kx(t) ∈ H < δx(t) /∈ L2.



Sketch of proof (cont.)

It is called a reproducing kernel also because

•K(t, x) = 〈K(t, ·), K(x, ·)〉K .

It is pd because

n
∑

i,j=1

cicjK(ti, tj) =
n
∑

i,j=1

cicj〈Kti
, Ktj

〉K = ||
∑

cjKtj
||2K ≥ 0.



Sketch of proof (cont.)

Conversely, given K one can construct the RKHS H as the

completion of the space of functions spanned by the set

Kx with x ∈ X with a inner product defined as follows.

The dot product of two functions f and g in H

f(x) =
s
∑

i=1

αiKxi(x)

g(x) =
s
∑

i=1

βiKxi(x)

where s ∈ IN, (s is finite or infinite depending on the kernel),



can be written as

〈f, g〉K =

〈 s
∑

i=1

αiK(xi, ·),
s
∑

i=1

βiK(xi, ·)

〉

K

=
s
∑

i,j=1

αiβjK(xi, xj).



Norms in RKHS, Complexity, and
Smoothness

We will measure the complexity of a hypothesis space using

the the RKHS norm, ‖f‖K.

The next example illustrate how bounding the RKHS norm

corresponds to enforcing some kind of “simplicity” or smooth-

ness of the functions.



A linear example

Our function space is 1-dimensional lines

f(x) = w x and K(x, xi) ≡ x xi.

For this kernel

f(x) =

n
∑

i=1

αiK(x, xi) =

n
∑

i=1

αixi x = x

n
∑

i=1

αixi = xw

so w =
∑n

i=1 αixi.

Using the RKHS norm

‖f(x)‖2
K =

n
∑

i,j=1

αiαjxixj =

(

n
∑

i=1

αixi

)





n
∑

j=1

αjxj



= w2

so our measure of complexity is the slope of the line.

We want to separate two classes using lines and see how the magnitude
of the slope corresponds to a measure of complexity.

We will look at three examples and see that each example requires

more complicated functions, functions with greater slopes, to separate

the positive examples from negative examples.



A linear example (cont.)

here are three datasets: a linear function should be used to

separate the classes. Notice that as the class distinction

becomes finer, a larger slope is required to separate the

classes.
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Historical Remarks

RKHS were explicitly introduced in learning theory by Girosi

(1997). Poggio and Girosi (1989) introduced Tikhonov

regularization in learning theory and worked with RKHS

only implicitly, because they dealt mainly with hypothesis

spaces on unbounded domains, which we will not discuss

here. Of course, RKHS were used much earlier in approx-

imation theory (eg Wahba, 1990...) and computer vision

(eg Bertero, Torre, Poggio, 1988...).



Tikhonov Regularization

As we saw in the last class we replace ERM with minimiza-

tion of the following functional, trading off the training

error and the complexity of the hypothesis (measured by

the radius of the ball in the RKHS):

fS = argmin
f∈H

1

`

∑̀

i=1

V (f(xi), yi) + λ‖f‖2K

where H is the RKHS as defined by the kernel K(·, ·).



The general solution to Tikhonov
regularization (in RKHS): the Representer

Theorem

Theorem. The solution to the Tikhonov regularization

problem

min
f∈H

1

`

∑̀

i=1

V (yi, f(xi)) + λ‖f‖2K

can be written in the form

f(x) =
∑̀

i=1

ciK(x, xi).

This theorem is exceedingly useful — it says that to solve

the Tikhonov regularization problem, we need only find

the best function of the form f(x) =
∑`

i=1 ciK(x, xi). Put

differently, all we have to do is find the ci.



): The Representer Theorem: short proof

Very short proof. We consider the square loss case. Ap-

ply the operator
∫

dtf(t) ∂
∂f , that is the integral of the func-

tional derivative, to

1

`

∑̀

i=1

(f(xi) − yi)
2 + λ‖f‖2K

and set it equal zero.

Thus

1

`

∑̀

i=1

(f(xi) − yi)f(xi) + λ〈f, f〉 = 0.



The equation must be valid for any f . In particular, setting

f = Kx gives

1

`

∑̀

i=1

(f(xi) − yi)Kx(xi) + λ〈f, Kx〉 = 0



): The Representer Theorem: short proof

1

λ`

∑̀

i=1

(yi − f(xi))Kx(xi) = 〈f, Kx〉

1

λ`

∑̀

i=1

(yi − f(xi))Kx(xi) = f(x)

so we can write

f(x) =
∑̀

i=1

ciKxi(x)

where

ci =
yi − f(xi)

`λ

since 〈f, Kx〉 = f(x).



Tikhonov Regularization and SVMs

In the next two classes we will study Tikhonov regulariza-

tion with different loss functions for both regression and

classification. We will start with the square loss and then

consider SVM loss functions.


