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1 Introduction

Today we will introduce a few basic mathematical concepts underlying conditions of the learning
theory and generalization property of learning algorithms. We will de�ne empirical risk, expected
risk and empirical risk minimization. Then regularization algorithms will be introduced which forms
the bases for the next few classes.

2 The Learning Problem

Consider the problem of supervised learning where for a number of input data X, the output labels
Y are also known. Data samples are taken independently from an underlying distribution µ(z) on
Z = X × Y and form the training set S:

(x1, y1), . . . , (xn, yn)

that is z1, . . . , zn. We assume independent and identically distributed (i.i.d.) random variables
which means the order does not matter (this is the exchangeability property). Our goal is to �nd
the conditional probability of y given a data x.

µ(z) = p(x, y) = p(y|x) · p(x)

p(x, y) is �xed but unknown. Finding this probabilistic relation between X and Y solves the learning
problem.

X Y

P(x)

P(y|x)

For example suppose we have the data xi, Fi measured from a spring. Hooke's law F = ax gives
p(F/x) = δ(F −ax). For additive Gaussian noise Hooke's law F = ax gives p(F/x) = e−(F−ax)2/2σ2

.
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2.1 Hypothesis Space

Hypothesis space H should be de�ned in every learning algorithm as the space of functions that can
be explored. This space can be in�nite or �nite. The learning algorithm will look into this space
of possible functions and depending on the training data S, �nds the function that maps the input
into the output. This function will be used for future predictions for a new value of X:

ypred = fS(xnew)

If y is a real-valued random variable, we have regression. If y takes values from an unordered �nite
set, we have pattern classi�cation. In two-class pattern classi�cation problems, we assign one
class a y value of 1, and the other class a y value of −1. Some exapmles of the possible hypothesis
spaces include:

• Example 1: H consists of continuous functions on [0, 1]. Continuity: For each ε there exist δ
s.t. for all x′ : |x− x′| < δ the following holds |f(x)− f(x′)| < ε

• Example 2: H consists of polynomials of degree n

• Example 3: H consists of all linear functions

• Example 4: H consists of equicontinuous functions on [0, 1]. H is bounded uniformly if there
exists M s.t. ∀f, x |f(x)| ≤ M . H is equicontinuous if: For each ε there exist δ s.t. for all
x′, x” s.t. |x′ − x′′| < δ and for all f ∈ H the following holds |f(x′) − f(x”)| < ε. D'Arzela'
theorem states that a necessary and su�cient condition for a class of continuous functions H
to be compact is to be uniformly bounded and equicontinuous.

2.2 Loss Functions

Loss function V is de�ned in order to measure the goodness of our prediction. V (f, z) = V (f(x), y)
denotes the price we pay when we see sample x and guess that the associated y value is f(x) when
it is actually y. For regression, the most common loss function is square loss or L2 loss:

V (f(x), y) = (f(x)− y)2

We could also use the absolute value, or L1 loss:

V (f(x), y) = |f(x)− y|

Vapnik's more general ε-insensitive loss function is:

V (f(x), y) = (|f(x)− y| − ε)+

y is the correct label and f(x) being the predicted label of sample x. For binary classi�cation, the
most intuitive loss is the 0-1 loss:

V (f(x), y) = Θ(−yf(x))

where Θ(−yf(x)) is the step function and y is binary, eg y = +1 or y = −1. This means that when
y and f(x) have the same sign a correct prediction with zero loss is achieved. For tractability and
other reasons, we often use the hinge loss (implicitely introduced by Vapnik) in binary classi�cation:

V (f(x), y) = (1− y · f(x))+

2-2



2.3 Expected Error, Empirical Error

Given a function f , a loss function V , and a probability distribution µ over Z, the expected or

true error of f is:

I[f ] = EzV [f, z] =
∫
Z

V (f, z)dµ(z)

which is the expected loss on a new example drawn at random from µ. Expected loss indicates
performance of the algorithm on the future samples. The goal is to choose f that makes the expected
error I[f ] as small as possible but in general we do not know µ. Instead we compute the empirical
approximation of the expected error called the empirical error which is the average error on the
training set. Given a function f , a loss function V , and a training set S consisting of n data points,
the empirical error of f is:

IS [f ] =
1
n

∑
V (f, zi)

3 Generalization and Stability

Let's �rst de�nce convergence in probability. For a sequence of random variables, {Xn}, convergence
is de�ned as follows:

lim
n→∞

Xn = X in probability

if
∀ε > 0 lim

n→∞
P{|Xn −X| ≥ ε} = 0.

or if for each n there exists a εn and a δn such that

P {|Xn −X| ≥ εn} ≤ δn,

with εn and δn going to zero for n→∞.

3.1 Generalization

A natural requirement for fS is distribution independent generalization. Generalization means
that the di�erence between the empirical error and the expected error goes to zero as the number
of training set samples increase:

∀µ, lim
n→∞

|IS [fS ]− I[fS ]| = 0 in probability

This is equivalent to saying that for each n there exists a εn and a δn such that ∀µ

P {|ISn
[fSn

]− I[fSn
]| ≥ εn} ≤ δn,

with εn and δn going to zero for n → ∞. In other words, the training error for the solution must
converge to the expected error and thus be a �proxy� for it. Otherwise the solution would not be
�predictive�. This is similar to the law of large numbers but there are di�rences between these two.
A desirable additional requirement is universal consistency de�ned as:

∀ε > 0 lim
n→∞

sup
µ

PS
{
I[fS ] > inf

f∈H
I[f ] + ε

}
= 0.

The consistency criteria indicates that if the size of training set goes to in�nity and over all probability
distributions, the expected error is very close to the f with minimum error. We are interested to
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have error bounds for any number of samples. For that we de�ne convergence rate. Suppose we can
prove that with probability at least 1− e−τ2 we have

|IS [fS ]− I[fS ]| ≤ C√
n
τ

for some (problem dependent) constant C. The above result gives a convergence rate. If we �x ε, τ
and solve for n the eq. ε = C√

n
τ we obtain the sample complexity:

n(ε, τ) =
C2τ2

ε2

This setup allows to �nd the number of samples needed for obtaining an error of ε, with con�dence
1− e−τ2. In addition to the key property of generalization, a �good� learning algorithm should also
be stable. This means that we don't want the function found by the learning algorithm to depend
critically on small changes in the training points. The stability problem is described in the next
section.

3.2 Well-posed and Ill-posed Problems

A problem is well-posed if its solution:

• exists

• is unique

• depends continuously on the data (e.g. it is stable)

A problem is ill-posed if it is not well-posed. In the context of this class, well-posedness is mainly
used to mean stability of the solution. Hadamard introduced the de�nition of ill-posedness. Ill-posed
problems are typically inverse problems. As an example, assume g is a function in Y and u is a
function in X, with Y and X Hilbert spaces. Then given the linear, continuous operator L, consider
the equation:

g = Lu

The direct problem is is to compute g given u, the inverse problem is to compute u given the data
g. The problem of learning is the inverse problem. In the learning case L is somewhat similar to a
�sampling� operation and the inverse problem becomes the problem of �nding a function that takes
the values:

f(xi) = yi, i = 1, ...n

The inverse problem of �nding u is well-posed when the solution exists, is unique and is stable, that
is depends continuously on the initial data g. Ill-posed problems fail to satisfy one or more of these
criteria. The learning problem like many inverse problems is often not stable and thus ill-posed. We
would like our class of learning algorithms to be stable.

4 Empirical Risk Minimization

One classical and simple class of learning algorithms is the empirical risk minimization algorithm.
Given a training set S and a function space H, empirical risk minimization (Vapnik introduced the
term) is the class of algorithms that look at S and select fS in the hypothesis space that minimizes
the empirical error:

fS = arg min
f∈H

IS [f ]
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For example linear regression is ERM when V (z) = (f(x)−y)2 and H is the space of linear functions
f = ax. For ERM to represent a �good� class of learning algorithms, the solution should be general
and stable. Here is an example of generalization given a certain number of samples and the true
solution for the samples:

Suppose that ERM algorithm selects this function (with zero empirical error):

This is not the true function that we want to know. Thus, we need to set generalization conditions
so that the ERM solution converges with increasing number of examples to the true solution.
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Now let's consider a stability example using 10 training points and the smoothest interpolating
polynomial �t with degree of 9 that gives a zero empirical error:
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Perturbing the points slightly gives the following solution:
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The results is a very di�erent solution. This means lack of stability in this example.

2-6



Using a lower degree polynomial e.g. 2, gives the following �ts before and after perturbation:
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Although the �t of data is not as good as before (empirical error > 0) but the solution does not
change much with perturbing the data, a fact that indicates stability.

4.1 Conditions for Well-posedness(stability) and Predictivity (general-
ization)

Since Tikhonov, it is well-known that a generally ill-posed problem such as ERM, can be guaranteed
to be well-posed and therefore stable by an appropriate choice of H. For example, compactness
of H guarantees stability. We would like to have a hypothesis space that yields generalization too.
Loosely speaking this would be a H for which the solution of ERM, say fS is such that |IS [fS ]−I[fS ]|
converges to zero in probability for n increasing. Note that the above requirement is NOT the law
of large numbers since f depends on the training set S and is not �xed. Is there any possible
relationship between stability and generalization?
According to (Vapnik and �ervonenkis (71), Alon et al (97), Dudley, Giné, and Zinn (91)), a
necessary and su�cient condition for generalization (and consistency) of ERM is that H is is a class
of functions called uniform Glivenko-Cantelli (uGC). H is a uGC class if

∀ε > 0 lim
n→∞

sup
µ

PS

{
sup
f∈H
|I[f ]− IS [f ]| > ε

}
= 0.

For example class of continious functions are not uGC and thus don't have the generalization condi-
tion. This theorem (Vapnik et al.) indicates that a proper choice of the hypothesis space H ensures
generalization of ERM (and consistency since for ERM generalization is necessary and su�cient for
consistency and viceversa). A separate theorem (Niyogi, Poggio et al.) guarantees stability of ERM.
Thus with the appropriate de�nition of stability, stability and generalization are equivalent for ERM
and correspond to the same constraints on H.

5 Regularization

Regularization (originally introduced by Tikhonov independently of the learning problem) ensures
well-posedness and thus generalization of ERM by constraining the hypothesis space H for instance
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not allowing polynomials with too high degree with respect to the number of data. The direct way
is called Ivanov regularization. The indirect way is Tikhonov regularization (which is not strictly
ERM). ERM �nds the function in (H, ‖ · ‖) which minimizes

1
n

n∑
i=1

V (f(xi), yi)

which in general � for arbitrary hypothesis space H � is ill-posed.
Ivanov regularizes by �nding the function that minimizes

1
n

n∑
i=1

V (f(xi), yi)

with functions that are constrained in their norm satisfying

‖f‖2 ≤ A.

Tikhonov regularization minimizes over the hypothesis space H, for a �xed positive parameter γ,
the regularized functional

1
n

n∑
i=1

V (f(xi), yi) + γ‖f‖2K , (1)

where ‖f‖K is the norm in H � the Reproducing Kernel Hilbert Space (RKHS), de�ned by the kernel
K. Tikhonov regularization ensures well-posedness eg existence, uniqueness and especially stability

(in a very strong form). It also provides generalization.

6 Target space, sample and approximation error

In addition to the hypothesis space H, the space we allow our algorithms to search, we need to
de�ne the target space T . This space is in general larger than the hypothesis space and contains
the true function f0 that minimizes the risk. Often, T is chosen to be all functions in L2, or all
di�erentiable functions. Notice that the �true� function if it exists is de�ned by µ(z), which contains
all the relevant information.

6.1 Sample Error

Let fH be the function in H with the smallest true risk. We have de�ned the generalization

error to be IS [fS ]− I[fS ]. We de�ne the sample error to be I[fS ]− I[fH], the di�erence in true
risk between the best function in H and the function in H we actually �nd. This is what we pay
because our �nite sample does not give us enough information to choose to the best function in H.
We'd like this to be small. Consistency � de�ned earlier � is equivalent to the sample error going
to zero for n → ∞. A main goal in classical learning theory (Vapnik, Smale, ...) is bounding the
generalization error. Another goal � for learning theory and statistics � is bounding the sample
error, that is determining conditions under which we can state that I[fS ]− I[fH] will be small (with
high probability). As a simple rule, we expect that if H is �well-behaved�, then, as n gets large the
sample error will become small.

6.2 Approximation Error

Let f0 be the function in T with the smallest true risk. We de�ne the approximation error to
be I[fH]− I[f0], the di�erence in true risk between the best function in H and the best function in
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T . This is what we pay when H is smaller than T . We'd like this error to be small too. In much of
the following we can assume that I[f0] = 0. We will focus less on the approximation error in 9.520,
but we will explore it. As a simple rule, we expect that as H grows bigger, the approximation error
gets smaller. If T ⊆ H � which is a situation called the realizable setting �the approximation error
is zero.

6.3 Error

We de�ne the error to be I[fS ]− I[f0], the di�erence in true risk between the function we actually
�nd and the best function in T . We'd really like this to be small. As we mentioned, often we
can assume that the error is simply I[fS ]. The error is the sum of the sample error and the
approximation error:

I[fS ]− I[f0] = (I[fS ]− I[fH]) + (I[fH]− I[f0])

If we can make both the approximation and the sample error small, the error will be small. There
is a tradeo� between the approximation error and the sample error. Thus, by decreasing the ap-
proximation error, the sample error increases and vice versa. The goal is to have a hypothesis space
which is large enough to give a small approximation error and small enough to give a small sample
error.
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