
1 Introduction

Here we discusses how a class of regularization methods originally designed to solve ill-posed inverse
problems give rise to regularized learning algorithms. These algorithms are kernel methods that can
be easily implemented and have a common derivation. However, they have di�erent computational
and theoretical properties. In particular, we discuss:

• ERM in the context of Tikhonov Regularization

• Linear ill-posed problems and stability

• Spectral regularization and �ltering

• Examples of algorithms

2 Tikhonov Regularization and ERM

Let S = {(x1, y1), . . . , (xn, yn)}, X be an n × d input matrix, and Y = (y1, . . . , yn) be an output
vector. k denotes the kernel function, and K is the n×n kernel matrix with entries Ki,j = k(xi, xj).
H is the RKHS with kernel k. The RLS estimator solves

min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H. (1)

By the Representer Theorem, we know that we can write the RLS estimator in the form

fλS (x) =

n∑
i=1

cik(x, xi) (2)

with
(K + nλI)c = Y, (3)

where c = (c1, . . . , cn).
Likewise, the solution to ERM

min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 (4)

can be written as

fS(x) =

n∑
i=1

cik(x, xi) (5)

where the coe�cients satisfy
Kc = Y. (6)

We can interpret the kernel problem to be ERM with a smoothness term, λ‖f‖2H. The smoothness
term helps avoid over�tting.

min
f∈H

1

n

n∑
i=1

(yi − f(xi))
2 =⇒ min

f∈H

1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H. (7)

The corresponding relationship between the equations for the coe�cients, c, is

Kc = Y =⇒ (K + nλI)c = Y. (8)

From a numerical point of view, the regularization factor nλI stabilizes a possibly ill-conditioned
inverse problem.
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3 Ill-posed Inverse Problems

Hadamard introduced the de�nition of ill-posedness. Ill-posed problems are typically inverse prob-
lems. Let G and F be Hilbert spaces, and L a continuous linear operator between them. Let g ∈ G
and f ∈ F , where

g = Lf. (9)

The direct problem is to compute g given f , the inverse problem is to compute f given the data g.
As we know, the inverse problem of �nding f is well-posed when

• the solution exists,

• is unique, and

• is stable (depends continuously on the data g).

Otherwise, the problem is ill-posed.

3.1 Regularization as a Filter

In the �nite-dimensional case, the main problem is numerical stability. For example, let the kernel
matrix have K = QΣQt, where Σ is the diagonal matrix diag(σ1, . . . , σn) with σ1 ≥ σ2 ≥ . . . ≥ 0
and q1, . . . , qn the corresponding eigenvectors. Then,

c = K−1Y = QΣ−1QtY =

n∑
i=1

1

σi
〈qi, Y 〉 qi. (10)

Terms in this sum with small eigenvalues σi give rise to numerical instability. For instance, if
there are eigenvalues of zero, the matrix will be impossible to invert. As eigenvalues tend toward
zero, the matrix tends toward rank-de�ciency, and inversion becomes less stable. Statistically, this
will correspond to high variance of the coe�cients ci.

For Tikhonov regularization,

c = (K + nλI)−1Y (11)

= Q(Σ + nλI)−1QtY (12)

=

n∑
i=1

1

σi + nλ
〈qi, Y 〉 qi. (13)

This shows that regularization as the e�ect of suppressing the in�uence of small eigenvalues in
computing the inverse. In other words, regularization �lters out the undesired components.

• If σ � λn, then 1
σi+nλ

∼ 1
σi
.

• If σ � λn, then 1
σi+nλ

∼ 1
λn .

We can de�ne more general �lters. Let Gλ(σ) be a function on the kernel matrix. We can
eigendecompose K to de�ne

Gλ(K) = QGλ(Σ)Qt, (14)

meaning

Gλ(K)Y =

n∑
i=1

Gλ(σi) 〈qi, Y 〉 qi. (15)

For Tikhonov Regularization

Gλ(σ) =
1

σ + nλ
. (16)
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3.2 Regularization Algorithms

In the inverse problems literature, many algorithms are known besides Tikhonov regularization. Each
algorithm is de�ned by a suitable �lter G. This class of algorithms performs spectral regularization.
They are not necessarily based on penalized empirical risk minimization (or regularized ERM).

In particular, the spectral �ltering perspective leads to a uni�ed framework for the following
algorithms:

• Gradient Descent (or Landweber Iteration or L2 Boosting)

• ν-method, accelerated Landweber

• Iterated Tikhonov Regularization

• Truncated Singular Value Decomposition (TSVD) and Principle Component Regression (PCR)

Not every scalar function G de�nes a regularization scheme. Roughly speaking, a good �lter
must have the following properties:

• As λ→ 0, Gλ(σ)→ 1/σ, so that
Gλ(K)→ K−1. (17)

• λ controls the magnitude of the (smaller) eigenvalues of Gλ(K).

De�nition 1 Spectral Regularization techniques are Kernel Methods with estimators

fλS =

n∑
i=1

cik(x, xi) (18)

that have
c = Gλ(K)Y. (19)

3.3 The Landweber Iteration

Consider the Landweber Iteration, a numerical algorithm for solving linear systems:

set c0 = 0
for i = 1, . . . , t− 1

ci = ci−1 + η(Y −Kci−1)

If the largest eigenvalue of K is smaller than g the above iteration converges if we choose the
step size η = 2/g.

The above algorithm can be viewed as using gradient descent to iteratively minimize the empirical
risk,

1

n
‖Y −Kc‖22, (20)

and stopping at iteration t. This is because the derivative of empirical risk with respect to c is
precisely (2/n)(Y −Kc). Note that

ci = νY + (I − νK)ci−1 (21)

= νY + (I − νK)[νY + (I − νK)ci−2] (22)

= νY + (I − νK)νY + (I − νK)2ci−2 (23)

= νY + (I − νK)νY + (I − νK)2νY + (I − νK)3ci−3 (24)
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Continuing this expansion and noting that c1 = νY , it is easy to see that the solution at the t-th
iteration is given by

c = η

t−1∑
i=0

(I − ηK)iY. (25)

Therefore, the �lter function is

Gλ(σ) = η

t−1∑
i=0

(I − ησ)i. (26)

Note that
∑
i≥0 x

i = 1/(1 − x) also holds replacing x with a matrix. If we consider the kernel
matrix (or rather I − ηK) we get

K−1 = η

∞∑
i=0

(I − ηK)i ∼ η
t−1∑
i=0

(I − ηK)i. (27)

The �lter function of the Landweber iteraiton corresponds to a truncated power expansion of K−1.
The regularization parameter is the number of iterations. Roughly speaking, t ∼ 1/λ.

• Large values of t correspond to minimization of the empirical risk and tend to over�t.

• Small values of t tend to oversmooth, recall we start from c = 0.

Therefore, early stopping has a regularizing e�ect, see Figure 1.
The Landweber iteration was rediscovered in statistics under the name L2 Boosting.

De�nition 2 Boosting methods build estimators as convex combinations of weaks learners.

Many boosting algorithms are gradient descent minimization of the empirical risk or the linear
span of a basis function. For the Landweber iteration, the weak learners are k(xi, ·), for i = 1, . . . , n.

An version of gradient descent is called the ν method, and requires
√
t iterations to get the same

solution that gradient descent would after t iterations.

set c0 = 0
ω1 = (4ν + 2)/(4ν + 1)
c1 = c0 + ω1(Y −Kc0)/n
for i = 2, . . . , t− 1

ci = ci−1 + ui(ci−1 − ci−2) + ωi(Y −Kci−1)/n

ui = (i−1)(2i−3)(2i+2ν−1)
(i+2ν−1)(2i+4ν−1)(2i+2ν−3)

ωi = 4 · (2i+2ν−1)(i+ν−1)
(i+2ν−1)(2i+4ν−1)

3.4 Truncated Singular Value Decomposition (TSVD)

Also called �spectral cut-o�,� the TSVD method works as follows: Given the eigendecomposition
K = QΣQt, a regularized inverse of the kernel matrix is built by discarding all the eigenvalues before
the prescribed threshold λn. It is described by the �lter function

Gλ(σ) =

{
1/σ if σ ≥ λn
0 otherwise.

(28)

It can be shown that TSVD is equivalent to

• unsupervised projection of the data by kernel PCA (KPCA), and
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Figure 1: Data, over�t, and regularized �t.
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• ERM on projected data without regularization

The only free parameter is the number of components retained for the projection. Thus, doing
KPCA and then RLS is redundant. If the data is centered, Spectral and Tikhonov regularization
can be seen as �ltered projection on the principle components.

3.5 Complexity and Parameter Choice

Iterative methods perform matrix-vector multiplication (O(n2) operations) at each iteration, and the
regularization parameter is the number of iterations. There is no closed form for LOOCV, making
parameter tuning expensive.

Tuning di�ers from method to method. In iterative and projected methods the tuning parameter
is naturally discrete, unlike in RLS. TSVD has a natural search-range for the parameter, and choosing
it can be interpreted in terms of dimensionality reduction.

4 Conclusion

Many di�erent principles lead to regularization: penalized minimization, iterative optimization, and
projection. The common intuition is that they enforce solution stability. All of the methods are
implicitly based on the use of a square loss. For other loss functions, di�erent notions of stability
can be used.

The idea of using regularization from inverse problems in statistics [?] and machine learning [?] is
now well known. The ideas from inverse problems usually regard the use of Tikhonov regularization.
Filter functions were studied in machine learning and gave a connection between function approxi-
mation in signal processing and approximation theory. It was typically used to de�ne a penalty for
Tikhonov regularization or similar methods. [?] showed the relationship between the neural network,
the radial basis function, and regularization.

5 Appendices

There are three appendices, which cover:

• Appendix 1: Other examples of Filters: accelerated Landweber and Iterated Tikhonov.

• Appendix 2: TSVD and PCA.

• Appendix 3: Some thoughts about the generalization of spectral methods.

5.1 Appendix 1: The ν-method

The ν-method or accelerated Landweber iteration is an accelerated version of gradient descent. The
�lter function is Gt(σ) = pt(σ), with pt a polynomial of degree t− 1. The regularization parameter
(think of 1/λ) is

√
t (rather than t): fewer iterations are needed to attain a solution.

It is implemented by the following iteration (repeating from before):

set c0 = 0
ω1 = (4ν + 2)/(4ν + 1)
c1 = c0 + ω1(Y −Kc0)/n
for i = 2, . . . , t− 1

ci = ci−1 + ui(ci−1 − ci−2) + ωi(Y −Kci−1)/n

ui = (i−1)(2i−3)(2i+2ν−1)
(i+2ν−1)(2i+4ν−1)(2i+2ν−3)
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ωi = 4 · (2i+2ν−1)(i+ν−1)
(i+2ν−1)(2i+4ν−1)

The following method, Iterated Tikhonov, is a combination of Tikhonov regularization and gra-
dient descent:

set c0 = 0
for i = 1, . . . , t− 1

(K + nλI)ci = Y + nλci−1

The �lter function is:

Gλ(σ) =
(σ + λ)t − λt

σ(σ + λ)t
. (29)

Both the number of iterations and λ can be seen as regularization parameters, and can be used
to enforce smoothness. However, Tikhonov regularization su�ers from a saturation e�ect: it cannot
exploit the regularity of the solution beyond a certain critical value.

5.2 Appendix 2: TSVD and Connection to PCA

Principle Component Analysis (PCA) is a well known dimensionality reduction technique often used
as preprocessing in learning.

De�nition 3 Assuming centered data X, XtX is the covariance matrix and its eigenvectors (V j)dj=1

are the principle components. xtj is the tranposes of the �rst row (example) in X. PCA amounts to
mapping each example xj into

x̃j = (xtjV
1, . . . , xtjV

m) (30)

where m < min{n, d}.

The above algorithm can be written using only the linear kernel matrix XXt and its eigenvectors
(U i)ni=1. The eigenvalues of XX

t and XXt are the same and

V j =
1
√
σj
XtU j . (31)

Then,

x̃j =

 1
√
σ1

n∑
j=1

U1
j x

t
jxj , . . . ,

1
√
σn

n∑
j=1

Umj x
t
jxj .

 (32)

Note that xtixj = k(xi, xj).
We can perform a nonlinear version of PCA, KPCA, using a nonlinear kernel. Let K eigende-

compose K = QΣQt. We can rewrite the projection in vector notation:
Let ΣM = diag(σ1, . . . , σm, 0, . . . , 0), then the projected data matrix X̃ is

X̃ = KQΣ
−1/2
M . (33)

Doing ERM on the projected data,

min
β∈Rm

‖Y − βX̃‖2n (34)

is equivalent to performing TSVD on the original problem. The Representer Theorem tells us that

βtx̃i =

n∑
j=1

x̃tj x̃icj (35)
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with c = (X̃X̃t)−1Y .

Using X̃ = KQΣ
−1/2
m , we get

X̃X̃t = QΣQtQΣ−1/2m Σ−1/2m QtQΣQt = QΣmQ
t, (36)

so that
c = QΣ−1m QtY = Gλ(K)Y, (37)

where Gλ is the �lter function of TSVD.
The two procedures are equivalent. The regularization parameter is the eigenvalue threshold in

one case and the number of components kept in the other case.

5.3 Appendix 3: Why Should These Methods Learn?

We have seen that
Gλ(K)→ K−1 as λ→ 0, (38)

and usually we don't want to solve
Kc = Y, (39)

since it would simply correspond to an over-�tting solution. It is useful to consider what happens if
we know the true distribution. Using integral-operator notation, if n is large enough,

1

n
K ∼ Lkf(s) =

∫
X

k(x, s)f(x)p(x)dx. (40)

In the ideal problem, if n is large enough, we have

Kc = Y ∼ Lkf = Lkfρ, (41)

where fρ is the regression (target) function de�ned by

fρ(x) =

∫
Y

y · p(y|x)dy. (42)

It can be shown that which is the least square problem associated to Lkf = Lkfρ. Tikhonov
regularization in this case is simply

MISSINGFROMSLIDES. (43)

or equivalently
fλ = (Lkf + λI)−1Lkfρ. (44)

If we diagonalize Lk to get the eigensystem {(tj , φj)}j , we can write

fρ =
∑
j

〈fρ, φj〉φj . (45)

Perturbations a�ect higher order components. Tikhonov Regularization can be written as

fλ =
∑
j

tj
tj + λ

〈fρ, φj〉φj . (46)

Sampling is a perturbation. Stabilizing the problem with respect to random discretization (sam-
pling), we can recover fρ.
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