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Learning problem and algorithms

Solve
min
f∈F

L(f), L(f) = E(x,y)∼P[`(y, f(x))],

given only
Sn = (x1,y1), . . . ,(xn,yn) ∼ Pn.

Learning algorithm
Sn→ f̂ = f̂Sn ,

f̂ estimates fP given the observed examples Sn.

How can we design a learning algorithm?
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Algorithm design: complexity and regularization

The design of most algorithms proceed as follows:

I Pick a (possibly large) class of function H, ideally

min
f∈H

L(f) = min
f∈F

L(f).

I Define a procedure Aγ(Sn) = f̂γ ∈ H to explore the space H.

L.Rosasco, 9.520/6.860 2019



Empirical risk minimization

A classical example (called M-estimation in statistics).

Consider (Hγ)γ such that

H1 ⊂H2, . . .Hγ ⊂ . . .H.

Then, let

f̂γ = min
f∈Hγ

L̂(f), L̂(f) = 1
n

n∑
i=1

`(yi, f(xi)).

This is the idea we discuss next.
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Linear functions

Let H be the space of linear functions

f(x) = w>x.

Then,
I f↔ w is one to one,
I inner product

〈
f, f̄
〉
H
:= w>w̄,

I norm/metric
∥∥∥f− f̄

∥∥∥H := ‖w− w̄‖.

Linear functions are the conceptual building block of most functions.
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Linear least squares

ERM with least squares also called ordinary least squares (OLS)

min
w∈Rd

1
n

n∑
i=1

(yi −w>xi)
2

︸                ︷︷                ︸
L̂(w)

.

I Statistics later…
I …now computations.
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Matrices and linear systems

Let X̂ ∈Rnd and Ŷ ∈Rn. Then

1
n

n∑
i=1

(yi −w>xi)
2 =

1
n
∥∥∥Ŷ− X̂w

∥∥∥2
.

This is the least squares problem associated to the linear system

X̂w = Ŷ.
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Overdetermined lin. syst.

n > d

Rd Rd
bX

bYbw

Rn

���bY � bXw
���

@ ŵ s.t. X̂w = Ŷ
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Least squares solutions

From the optimality conditions

∇w
1
n
∥∥∥Ŷ− X̂w

∥∥∥2
= 0

we can derive the normal equation

X̂>X̂w = X̂>Ŷ ⇔ ŵ = (X̂>X̂)−1X̂>Ŷ.
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Underdetermined lin. syst.
n < d

Rd Rn

Rd

bX

bYbw

∃ ŵ s.t. X̂w = Ŷ

possibly not unique…
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Minimal norm solution

There can be many solutions

X̂ŵ = Ŷ, and X̂w0 = 0 ⇒ X̂(ŵ+w0) = Ŷ.

Consider
min

w∈Rd
‖w‖2 , subj. to X̂w = Ŷ.

Using the method of Lagrange multipliers, the solution is

ŵ = X̂>(X̂X̂>)−1Ŷ.
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Pseudoinverse

ŵ = X̂†Ŷ

For n > d, (independent columns)

X̂† = (X̂>X̂)−1X̂>.

For n < d, (independent rows)

X̂† = X̂>(X̂X̂>)−1.
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Spectral view

Consider the SVD of X̂

X̂ = USV> ⇔ X̂w =
r∑

j=1
sj(v>j w)uj,

here r ≤ n∧d is the rank of X̂.

Then,

ŵ† = X̂†Ŷ =
r∑

j=1

1
sj
(u>j Ŷ)vj.
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Pseudoinverse and bias

ŵ† = X̂†Ŷ =
r∑

j=1

1
sj
(u>j Ŷ)vj.

(vj)j are principal components of X̂: OLS “likes” principal
components.

Not all linear functions are the same for OLS!

The pseudoinverse introduces a bias towards certain solutions.
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From OLS to ridge regression

Recall, it also holds,

X̂† = lim
λ→0+

(X̂>X̂+λI)−1X̂> = lim
λ→0+

X̂>(X̂X̂>+λI)−1.

Consider for λ > 0,

ŵλ = (X̂>X̂+λI)−1X̂>Ŷ.

This is called ridge regression.
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Spectral view on ridge regression

ŵλ = (X̂>X̂+λI)−1X̂>Ŷ

Considering the SVD of X̂,

ŵλ =
r∑

j=1

sj

s2
j +λ

(u>j Ŷ)vj.
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Ridge regression as filtering

ŵλ =
r∑

j=1

sj

s2
j +λ

(u>j Ŷ)vj

The function
F(s) = s

s2 +λ
,

acts as a low pass filter (low frequencies= principal components).

I For s small, F(s) ≈ 1/λ.
I For s big, F(s) ≈ 1/s.
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Ridge regression as ERM

ŵλ = (X̂>X̂+λI)−1X̂>Ŷ

is the solution of
min

w∈Rd

∥∥∥Ŷ− X̂w
∥∥∥2

+λ‖w‖2︸                   ︷︷                   ︸
L̂λ(w)

.

It follows from,

∆L̂λ(w) = −2
n

X̂>(Ŷ− X̂w)+ 2λw = 2(1
n

X̂>X̂+λI)w− 2
n

X̂>Ŷ.
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Ridge regression as ERM

ERM interpretation suggests the rescaling

ŵλ = (X̂>X̂+nλI)−1X̂>Ŷ

since
min

w∈Rd

1
n
∥∥∥Ŷ− X̂w

∥∥∥2
+λ‖w‖2︸                      ︷︷                      ︸

L̂λ(w)

.
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Related ideas

Tikhonov
min

w∈Rd

1
n
∥∥∥Ŷ− X̂w

∥∥∥2
+λ‖w‖2

Morozov
min

w∈Rd
‖w‖2 subj. to 1

n
∥∥∥Ŷ− X̂w

∥∥∥2 ≤ δ

Ivanov
min

w∈Rd

1
n
∥∥∥Ŷ− X̂w

∥∥∥2
, subj. to ‖w‖2 ≤ R
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Ridge regression and SRM

The constraint
‖w‖2 ≤ R

I restricts the search of solution,
I shrinks the solution coefficients.
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Different views on regularization

ŵ = X̂†Ŷ ŵλ = (X̂>X̂+λI)−1X̂>Ŷ

min
w∈Rd s.t. X̂w=Ŷ

‖w‖2 min
w∈Rd

1
n

n∑
i=1

(yi −w>xi)
2 +λ‖w‖2

I Introduces a bias towards certain solutions: small norm/principal
components,

I controls the stability of the solution .
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Complexity of ridge regression

Back to computations.

Solving
ŵλ = (X̂>X̂+λI)−1X̂>Ŷ

requires essentially (using a direct solver)
I time O(nd2 +d3),
I memory O(nd∨d2).

What if n� d?
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Representer theorem in disguise

A simple observation
Using SVD we can see that

(X̂>X̂+λI)−1X̂> = X̂>(X̂X̂>+λI)−1
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More on complexity

Then
ŵλ = X̂>(X̂X̂>+λI)−1Ŷ.

requires essentially (using a direct solver)
I time O(n2d+n3),
I memory O(nd∨n2).
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Representer theorem

Note that

ŵλ = X̂> (X̂X̂>+λI)−1Ŷ︸             ︷︷             ︸
c∈Rn

=
n∑

i=1
xici.

The coefficients vector is a linear combination of the input points.

Then

f̂λ(x) = x>ŵλ = x>X̂>c =
n∑

i=1
x>xici

The function we obtain is a linear combination of inner products.

This will be the key to nonparametric learning.
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Summing up

I From OLS to ridge regression
I Different views: (spectral) filtering and ERM
I Regularization and bias.

TBD
I Beyond linear models.
I Optimization.
I Model selection.
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