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Learning problem and algorithms

Solve

minL(f) L(f) = E(xy)~p[£(y, f(x))],

given only
Sn = (x1,¥1)- s (X, ¥n) ~ P

Learning algorithm

f estimates fp given the observed examples S,,.
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Learning problem and algorithms

Solve

minL(f) L(f) = E(xy)~p[£(y, f(x))],

given only
Sn = (x1,¥1)- s (X, ¥n) ~ P

Learning algorithm

f estimates fp given the observed examples S,,.

How can we design a learning algorithm?
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Algorithm design: complexity and regularization

The design of most algorithms proceed as follows:

> Pick a (possibly large) class of function H, ideally

inL(f) = min L(f).
e 0 =0

» Define a procedure Ay(Sn) = %}, € 'H to explore the space H.
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Empirical risk minimization

A classical example (called M-estimation in statistics).

Consider (H, ), such that

7/)7’
Hq CHQ,...H),C...H.

Then, let

~

f), = min f(f), f(f) = %ZZ(}G, f(x;)).

fen,,

This is the idea we discuss next.
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Linear functions

Let H be the space of linear functions

fx)=w'x

Then,

» f <> w is one to one,

» inner product <f,f>H =W W,

> norm/metric ”f—f”H = ||lw — W]
Linear functions are the conceptual building block of most functions.
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Linear least squares

ERM with least squares also called ordinary least squares (OLS)

» Statistics later...

> ..now computations.
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Matrices and linear systems

Let X e R® and Y € R®. Then

1 v e =
H Z(yl —VVTXi)2 = E HY—){W”2
i=1

This is the least squares problem associated to the linear system
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Overdetermined lin. syst.

n>d

AW s.t. Xw=Y
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Least squares solutions

From the optimality conditions
1= = 12
V= |[Y -Xw|[" =0
n
we can derive the normal equation

X=XV o =TV
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Underdetermined lin. syst.

n<d

AW st. Xw=Y

possibly not unique...
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Minimal norm solution

There can be many solutions

X(N\:?, and X\WO =0 :>X\(§V\+W0) :?

Consider

min |lw]|?, subj. to Xw =Y.
weRd

Using the method of Lagrange multipliers, the solution is

w=X"(XX")Y.
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Pseudoinverse

For n >d, (independent columns)

= (X7TR)IKT

For n < d, (independent rows)

XF=XT(XXT)™.
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Spectral view

Consider the SVD of X

X=USVT & Xw=) s(v/w)y,

here r <n Ad is the rank of X.

Then

)
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Pseudoinverse and bias

r
— 1 —
=t +
j=1

(vj); are principal components of X: OLS “likes” principal

components.

Not all linear functions are the same for OLS!

The pseudoinverse introduces a bias towards certain solutions.
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From OLS to ridge regression

Recall, it also holds,

X = lim XTX+ A1) XT = lim XT(XXT 4+ A1)"L
A—04 A—04

Consider for A >0,

W= XX+ D) XTY.

This is called ridge regression.
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Spectral view on ridge regression

W= X"TX+AD)'XTY

Considering the SVD of X,
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Ridge regression as filtering

r
= _ 5 TV
Wy = } 1 s.2—|—/\(uj Y)v;
=17

The function S

F(s) = 5,
()= 37>

acts as a low pass filter (low frequencies= principal components).

> For s small, F(s) ~ 1/A.
> For s big, F(s) =~ 1/s.
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Ridge regression as ERM

W)= XX+ AD)XTY
is the solution of

min ||?—§w”2 + Aljw|[?.

weRd

Li(w)

It follows from,

_ o 1 B
AT (w) = ~2XT(V - Kw) 4 24w = 2( XX 4 Al)w - 2377,
n n
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Ridge regression as ERM

ERM interpretation suggests the rescaling
Wi=X"X+0A)'XTY
since

min || = ][ + Alhwll?.

welRd 11

Li(w)
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Related ideas

Tikhonov )
) = = 2
min = ||Y = Xw]|” + Aljwl[?
weRd
Morozov L )
min ||w][? subj. to —H?—Xw” <o
welRd n
Ivanov 1
= = 12
min —||Y—XW| , subj. to Iwl*> <R
weRd 1
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Ridge regression and SRM

The constraint
Iwl®* <R

» restricts the search of solution,

» shrinks the solution coefficients.
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Different views on regularization

FoXIY 1= (K4 )XY
1 n
min_ WP min =) (vi—wTx)? 4 A
weRd s.t. Xw=Y weRd 11 =

> Introduces a bias towards certain solutions: small norm/principal
components,

» controls the stability of the solution .
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Complexity of ridge regression

Back to computations.

Solving
= XTX+AD)IXTY

requires essentially (using a direct solver)
> time O(nd2 + d?),
> memory O(nd Vv d?).

What if n < d?
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Representer theorem in disguise

A simple observation
Using SVD we can see that

XTX4+ADIXT =XT(XXT 4 A1) 7!
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More on complexity

Then L .
Wy =XT(XXT +AD)7Y.

requires essentially (using a direct solver)
> time O(n?d +n?),
» memory O(nd V n?).
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Representer theorem

Note that

n
/VV/'\ = X\T (ﬁ—r —+ /\I)_l? = ZXiCi.
i=1

ceR"

The coeflicients vector is a linear combination of the input points.

Then
n
Hx)=x"w,=x"X"c= ZXTXiCi
i=1

The function we obtain is a linear combination of inner products.
This will be the key to nonparametric learning.
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Summing up

» From OLS to ridge regression
> Different views: (spectral) filtering and ERM

» Regularization and bias.

TBD
» Beyond linear models.
» Optimization.
»> Model selection.
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