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Learning from examples

» Machine Learning deals with systems that are trained from data
rather than being explicitly programmed.

» Here we describe the framework considered in statistical learning
theory.
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All starts with DATA

» Supervised: {(x1,y1),--.,(Xn,¥n)}-

» Unsupervised: {x1,...,Xmn}-

» Semi-supervised: {(x1,¥1), -+, (Xn, ¥Yn) FU{X1, .-, Xm}-
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The supervised learning problem

> X x Y probability space, with measure P.
> /.Y XY — [0,00), measurable loss function.

Define expected risk:

L(F) = /X U FR)IP ().

Problem: Solve
min L(f),
FX—=Y
given only
5n = (X17Y1)7 ey (men) ~ Pna

sampled i.i.d. with P fixed, but unknown.
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Data space

X X
input space  output space
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Input space

X input space:

» Linear spaces, e. g.

— vectors,
— functions,
— matrices/operators.

» “Structured” spaces, e. g.
— strings,
— probability distributions,
— graphs.
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Output space

Y output space:

> linear spaces, €. g.
— Y =R, regression,
— Y =R7, multitask regression,
— Y Hilbert space, functional regression.

» “Structured” spaces, e. g.
- Y ={-1,1}, classification,

- Y ={1,..., T}, multicategory classification,
— strings,

— probability distributions,

— graphs.
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Probability distribution

Reflects uncertainty and stochasticity of the learning problem,

P(va) = PX(X)P(y|X)a

» Px marginal distribution on X,

> P(y|x) conditional distribution on Y given x € X.
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Conditional distribution and noise

I+
(4, 94) d
(z.l,yl) . (w5,95)
(3, 93)
° (z2,92)

Regression

yi = f(x;) + €.

» Let f, : X — Y, fixed function,
» ¢1,...,€, zero mean random variables, ¢; ~ N(0, o),

> x1,...,X, random,
P(ylx) = N(f*(x), ).
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Conditional distribution and misclassification

Classification

P(ylx) = {P(1lx), P(=1|x)}.

v.l
¥}

Noise in classification: overlap between the classes,

As = {x e X ‘ IP(1]x) —1/2| < 5}.
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Marginal distribution and sampling

Px takes into account uneven sampling of the input space.
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Marginal distribution, densities and manifolds

- dP)((X) - dP)((X)
Pi) = dx P() = dvol(x)
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Loss functions

L:Y XY —][0,00)

» Cost of predicting f(x) in place of y.
» Measures the pointwise error {(y, f(x)).

> Part of the problem definition since L(f) = [y (v, f(x))dP(x,y).

Note: sometimes it is useful to consider loss of the form
£:Y xG—[0,00)
for some space G, e.g. G =R.
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Loss for regression

ég(yvy/):‘/(y*y/)a VR*)[QOO)

> Square loss {(y,y') = (y — y')>.
> Absolute loss (y,y") = |y — y'|
> e-insensitive £(y,y’) = max(|ly — y'| — ¢, 0).

1.0f
0.8
—— Square Loss
0.6 —— Absolute
—— € - insensitive
041
02
1.0 0.5 0.5 1.0
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Loss for classification

Uy,y)=V(-yy'), V:R—=]0,00).

» 0-1loss U(y,y') =0O(—yy’), ©(a)=1,if a>0 and 0 otherwise.
» Square loss £(y,y’) = (1 — yy')2.

> Hinge-loss £(y,y’) = max(1 — yy’,0).

> Logistic loss £(y,y’) = log(1 + exp(—yy’)).

— 01 loss
—— square loss
—— Hinge loss

—— Logistic loss
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Loss function for structured prediction

Loss specific for each learning task, e.g.
» Multiclass: square loss, weighted square loss, logistic loss, . . .
» Multitask: weighted square loss, absolute, . ..
> ...
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Expected risk

L(F) = /X U AP ().

with
feF, F={f:X—=Y|f measurable}.

Example

Y ={-1,+1}, £y, f(x))=0O(-yf(x))*
L(F) =P({(x,y) € X X Y | f(x) # y}).
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Target function

fp = arg?;i.rg_ L(f),

can be derived for many loss functions.

L(F) = / dP(x, y){(y, F(x)) = / dPX(x) / Uy, F(x))dP(y|x).

Le(£(x))

It is possible to show that:
> infrer L(F) = [ dPx(x)infacr Li(a).

» Minimizers of L(f) can be derived “pointwise” from the inner risk

L((x)).
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Target functions in regression

square loss

fo(x) = /Y ydP(yx).

absolute loss
fp(x) = median(P(y|x)),

y +o0o
median(p(-)) =y s.t. / tdp(t):/ tdp(t).

— 00
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Target functions in classification

misclassification loss

fp(x) = sign(P(1]x) — P(—1]x)).

square loss
fp(x) = P(1|x) — P(—1|x).
logistic loss )
P(1]x
hinge-loss

fp(x) = sign(P(1]|x) — P(—1]x)).
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Learning algorithms

Solve

in L(f
;@;(L

given only
5,-, = (X17y1), ey (Xna}/n) ~ P".

Learning algorithm L
5,, — f,, = fs .

n

f, estimates fp given the observed examples S,,.

How to measure the error of an estimate?
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Excess risk

EXCGSS Sk .

Consistency: For any € > 0,

lim P <L(A) — min L(f) > e> =0.

n— oo feF
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Other forms of consistency

Consistency in Expectation: For any € > 0,

-~

lim E[L(f) — min L(f)] = 0.

n—o0 feF

Consistency almost surely: For any € > 0,

P (nin;o L(f) — min L(f) = o) =1

Note: different notions of consistency correspond to different notions of
convergence for random variables: weak, in expectation and almost sure.
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Sample complexity, tail bounds and error bounds

» Sample complexity: For any € > 0,6 € (0,1], when n > np (e, 9),

P (L(?) — min L(f) > e> < 6.

» Tail bounds: For any e > 0,n € N,

) — mi >e) < :
P (L(f) ;nel-;j_ L(f) > e) < dp r(n,e)
» Error bounds: For any 6 € (0,1], n€ N,

P (L(f) — min L(f) < ep (. 5)) >1-4.
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No free-lunch theorem

A good algorithm should have small sample complexity for many
distributions P.

No free-lunch
Is it possible to have an algorithm with small (finite) sample complexity
for all problems?

The no free lunch theorem provides a negative answer.

In other words given an algorithm there exists a problem for which the
learning performance are arbitrarily bad.
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Algorithm design: complexity and regularization

The design of most algorithms proceed as follows:

» Pick a (possibly large) class of function H, ideally

i L) = i L)

~

» Define a procedure A,(S,) = f, € H to explore the space H
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Bias and variance

Let £, be the solution obtained with an infinite number of examples.

Key error decomposition

L(R) = min L(f) = L(R) — L(F) +L(F,) - min L(F)
v —_— —

Variance / Estimation ] ] ]
Bias / Approximation

Small Bias lead to good data fit, high variance to possible instability.
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ERM and structural risk minimization

A classical example.

Consider (H), such that

HiCHoy.. HyC ... H
Then, let

. - ~ IR
= min L) L(f)=~ ;f(yf, f(xi))

Example
H., are functions f(x) = w'x (or f(x) = w'®(x)), s.t.|[w| <~
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Beyond constrained ERM

In this course we will see other algorithm design principles:
» Penalization
» Stochastic gradient descent
> Implicit regularization
» Regularization by projection
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