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Recall from last lecture: for any T and (x1,y1), . . . , (xT ,yT ),

T

∑
t=1

I{yt ⟨wt,xt⟩ ≤ 0} ≤ D
2

γ2

where γ = γ(x1∶T ,y1∶T ) is margin and D = D(x1∶T ,y1∶T ) = maxt ∥xt∥.

Let w∗ denote the max margin hyperplane, ∥w∗∥ = 1.
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Consequence for i.i.d. data (I)

Do one pass on i.i.d. sequence (X1,Y1), . . . , (Xn,Yn) (i.e. T = n).

Claim: expected indicator loss of randomly picked function x↦ ⟨wτ,x⟩
(τ ∼ unif(1, . . . ,n)) is at most

1

n
× E [D

2

γ2
] .
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Proof: Take expectation on both sides:

E [ 1

n

n

∑
t=1

I{Yt ⟨wt,Xt⟩ ≤ 0}] ≤ E [ D
2

nγ2
]

Left-hand side can be written as (recall notation S = (Xi,Yi)ni=1)

EτES I{Yτ ⟨wτ,Xτ⟩ ≤ 0}

Since wτ is a function of X1∶τ−1,Y1∶τ−1, above is

ESEτEX,YI{Y ⟨wτ,X⟩ ≤ 0} = ESEτL01(wτ)

Claim follows.

NB: To ensure E[D2/γ2] is not infinite, we assume margin γ in P.
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Consequence for i.i.d. data (II)

Now, rather than doing one pass, cycle through data

(X1,Y1), . . . , (Xn,Yn)

repeatedly until no more mistakes (i.e. T ≤ n × (D2/γ2)).

Then final hyperplane of Perceptron separates the data perfectly, i.e. finds
minimum L̂01(wT ) = 0 for

L̂01(w) = 1

n

n

∑
i=1

I{Yi ⟨w,Xi⟩ ≤ 0}.

Empirical Risk Minimization with finite-time convergence. Can we say
anything about future performance of wT?

7 / 19



Consequence for i.i.d. data (II)

Claim: expected indicator loss of wT is at most

1

n + 1
× E [D

2

γ2
]
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Proof: Shortcuts: z = (x,y) and `(w, z) = I{y ⟨w,x⟩ ≤ 0}. Then

ESEZ`(wT ,Z) = ES ,Zn+1 [ 1

n + 1

n+1
∑
t=1
`(w(−t),Zt)]

where w(−t) is Perceptron’s final hyperplane after cycling through data
Z1, . . . ,Zt−1,Zt+1, . . . ,Zn+1.

That is, leave-one-out is unbiased estimate of expected loss.

Now consider cycling Perceptron on Z1, . . . ,Zn+1 until no more errors. Let
i1, . . . , im be indices on which Perceptron errs in any of the cycles. We
know m ≤ D2/γ2. However, if index t ∉ {i1, . . . , im}, then whether or not Zt
was included does not matter, and Zt is correctly classified by w(−t). Claim
follows.
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This last consequence is pretty nice. Note that Bayes error L01(f∗) = 0 since
we assume margin in the distribution P (and, hence, in the data).
Furthermore, we have EL01(wT ) = O(1/n).

The reason we were able to achieve a nice convergence rate for
EL01(wT ) − L01(f∗) is because we made an assumption about the
distribution (recall our statement last lecture that nothing can be said
about this difference if we make no assumptions).

Important: our assumption on P is not about its parametric or
nonparametric form (e.g. as in the Bayesian analysis), but rather on what
happens at the boundary.
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SGD vs Multi-Pass

Perceptron update can be seen as gradient descent step with respect to loss

max{Yt ⟨w,Xt⟩ , 0}

and step size 1.

Hence, the two consequences presented earlier can be viewed, respectively,
as SGD on

Emax{Y ⟨w,X⟩ , 0}
and multi-pass cycling “SGD” on

1

n

n

∑
t=1

max{Yt ⟨w,Xt⟩ , 0} .

The first optimizes expected loss, the second optimizes empirical loss.
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An aside..

Much hype in ML community is about surprising performance of deep
networks despite overparametrization and despite fitting data perfectly.

Remark: dimension d never appears in the mistake bound of Perceptron.
Hence, we can even take d =∞.

Note: d is number of neurons in the 1-layer neural network.

In high enough dimension, any n points in general position can be
separated (zero empirical error).

Conclusions:

▸ More parameters than data does not necessarily contradict good
prediction performance (“generalization”).

▸ Perfectly fitting the data does not necessarily contradict good
generalization.

▸ Complexity is a subtle notion (e.g. number of parameters vs margin)
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Rates vs sample complexity

We will be making statements such as: in expectation or with high
probability, expected loss is upper bounded by

n
−α

where, typically, α = 1/2 or α = 1, but we will also see examples with
α ∈ (0, 1].

In the previous example, α = 1. We say that last output of Perceptron (run
to convergence) has expected error rate of O(1/n).

Alternatively, number of samples required to achieve error ε is ε−1/α.
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Recall that we obtained

EL(wT ) − L(f∗) ≤ O(1/n)

under the assumption that P is linearly separable with margin γ.

The assumption on the probability distribution implies that the Bayes
classifier is a linear separator. Such a setup is sometimes called “realizable”
because the Bayes classifier belongs to the class of functions with which we
are working.

We may relax the margin assumption, yet still hope to do well with linear
separators. That is, we would aim to minimize

EL01(wT ) − L01(w∗)

hoping that
L01(w∗) − L01(f∗)

is small, where w∗ is the best hyperplane classifier with respect to L01.
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More generally, we will work with some class of functions F that we hope
captures well the relationship between X and Y. The choice of F gives rise
to a bias-variance decomposition.

Let fF ∈ argmin
f∈F

L(f) be the function in F with smallest expected loss.
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Bias-Variance Tradeoff

L(f̂n) − L(f∗) = L(f̂n) − inf
f∈F

L(f)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Estimation Error

+ inf
f∈F

L(f) − L(f∗)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Approximation Error

F

f̂n f⇤fF

Clearly, the two terms are at odds with each other:

▸ Making F larger means smaller approximation error but (as we will
see) larger estimation error

▸ Taking a larger sample n means smaller estimation error and has no
effect on the approximation error.

▸ Thus, it makes sense to trade off size of F and n. This is called
Structural Risk Minimization, or Method of Sieves, or Model Selection.
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Bias-Variance Tradeoff

We will only focus on the estimation error, yet the ideas we develop will
make it possible to read about model selection on your own.

Once again, if we guessed correctly and f∗ ∈ F , then

L(f̂n) − L(f∗) = L(f̂n) − inf
f∈F

L(f)

This was the case in Perceptron under margin assumption.

For a particular problem, one hopes that prior knowledge about the problem
can ensure that the approximation error inff∈F L(f) − L(f∗) is small.
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Bias-Variance Tradeoff

In simple problems (e.g. linearly separable data) we might get away with
having no bias-variance decomposition (e.g. as was done in the Perceptron
case).

However, when we start considering more complex problems, our
assumptions on P often imply that F is too large and the estimation error
cannot be controlled. In such cases, we need to do the bias-variance
decomposition.

Finally, the bias-variance tradeoff need not be in the form we just
presented. For instance, we will consider a different decomposition for local
rules later in the course.
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