
9.520 – Math Camp

Probability Theory

Say we have some training data S(n), consisting of n input points {xi}ni=1 and the corresponding
labels {yi}ni=1:

S(n) = {(x1, y1), . . . , (xn, yn)}

We also have a learning algorithm that maps the training data S(n) into a function fn that will
convert any new input x into a prediction fn(x) of the corresponding label y.

We’d like to prove something about the performance of the learning algorithm – ideally,
some guarantee that the learned function will be predictive at points not in the training set.
Generally this is done using two concepts: consistency and generalization. Consistency is similar
to the intuitive notion of successful learning: the algorithm is consistent if the function it learns
performs as well (in expectation) as the best function in its hypothesis class.

Here we’ll focus on generalization. Roughly speaking, an algorithm generalizes if training
set performance predicts expected test set performance. This is a useful theoretical property:
it means that the expected performance of the algorithm is descriptive of its performance on a
finite training set. Consistency and generalization together imply a theoretical guarantee on the
future performance of a learning algorithm.

We formalize generalization by saying that, as the number n of points in the training set
gets large, the error of our learned function on the training set should converge to the expected
error of that same learned function over all possible inputs. Note that the learned function can
change with n. We’ll denote the error of a function f on the training set by In:

In[f ] =
1

n

∑
i

V (f(xi), yi)

V is the loss function, e.g. the squared error: V (f(xi), yi) = (yi − f(xi))
2. The expected error

of f over the whole input space is I:

I[f ] =

∫
V (f(xi), yi)dµ(xi, yi)

where µ is the probability distribution – unknown to us – from which the points (xi, yi) are
drawn. Using this notation, the formal condition for generalization of a learning algorithm is:

lim
n→∞

P{|In[fn]− I[fn]| ≥ ε} = 0

for all ε > 0, where n is the number of training samples and P{·} denotes the probability. So
the probability of the training set error being different from the expected error should go to
zero, as we increase the number of training samples.

Goal : We’ll try here to make sense of this definition of generalization and show, in the most
basic cases, how to prove statements like it.

First, some definitions.
A random variable X, for our purposes, is a variable that randomly assume a value in some

range (assume this is R) according to a probability distribution. X’s probability distribution
(a.k.a. probability measure) is a function that assigns probabilities to subsets of X’s range,
written P(A) where A ⊂ R.
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A collection of random variables {Xn} is independent and identically distributed if
pX1,X2,...(X1 = x1, X2 = x2, . . . ) =

∏
i
pX1(Xi = xi) =

∏
i
pX2(Xi = xi) = . . . .

The expectation (mean) of a random variable is given by

EX ,
∫
xdP(x)

You can think of dP(x) analogously to the usual dx: dx is the area of an infinitesimal part of
the domain of integration and dP(x) is the probability of an infinitesimal part of the domain of
integration.

The problem: We want to prove things about the probability of In[fS ] being close to I[fn].
In what sense is there a probability distribution over the values of I[fn] and In[fn]? It derives

from the fact that the function f
(n)
S depends on the training set (via the learning algorithm),

and the training set is drawn from a probability distribution. The key challenge here is that we
don’t know this underlying distribution of the datapoints (xi, yi). So the problem is to bound
the probability of certain events (like |In[fn] − I[fn]| ≥ ε), without knowing much about how
they’re distributed.

The solution: Concentration inequalities. These inequalities put bounds on the prob-
ability of an event (like X ≥ c), in terms of only some limited information about the actual
distribution involved (say, X’s mean). We can prove that any distribution that is consistent
with our limited information must concentrate its probability density around certain events.

Say we know the expectation of a random variable. Then we can apply Markov’s Inequal-
ity: Let X be a non-negative-valued random variable. Then for any constant c > 0

P(X ≥ c) ≤ EX

c

More generally, if f(x) is a non-negative function, then

P(f(X) ≥ c) ≤ Ef(X)

c

Proof. We’ll prove the former, although the proof for nonnegative f(X) is essentially the same.

EX =

∫ +∞

0
xdP(x)

≥
∫ +∞

c
xdP(x)

≥ c
∫ +∞

c
dP(x)

= c[P(x < +∞)−P(X < c)]

= cP(X ≥ c)

Rearranging this gives the inequality.

Now say we know both the expectation and the variance. We can use Markov’s inequality
to derive Chebychev’s Inequality: Let X be a random variable with finite variance σ2, and
define f(X) = |X −EX|. Then for any constant c > 0, Markov’s inequality gives us

P(|X −EX| ≥ c) = P((X −EX)2 ≥ c2) ≤ E(X −EX)2

c2
=
σ2

c2
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Example: What’s the probability of a 3σ event if all we know about the random variable X
is its mean and variance?

When we talk about generalization, we are talking about convergence of a sequence of
random variables, IS [fS ], to a limit I[fS ]. Random variables are defined by probability distri-
butions over their values, though, so we have to define what convergence means for sequences
of distributions. There are several possibilities and we’ll cover one.

First, a reminder: convergence typically means that you have a sequence {xn}∞n=1 in some
space with a distance |y− z| and the values get arbitrarily close to a limit x. Formally, for any
ε > 0, there exists some N ∈ N such that for all n ≥ N ,

|xn − x| < ε

A sequence of random variables {Xn}∞n=1 converges in probability to a random variable
X if for every ε > 0,

lim
n→∞

P(|Xn −X| ≥ ε) = 0

In other words, in the limit the joint probability distribution of Xn and X gets concentrated
arbitrarily tightly around the event Xn = X.

We can put Markov’s inequality together with convergence in probability to get the weak
law of large numbers: let {Xn}∞n=1 be a sequence of i.i.d. random variables with mean

µ = EXi and finite variance σ2. Define the “empirical mean” to be X̄n = 1
n

n∑
i=1

Xi (note that

this is itself a random variable). Then for every ε > 0

lim
n→∞

P(|X̄n − µ| ≥ ε) = 0

Proof. This goes just like the derivation of Chebychev’s inequality. We have

P(|X̄n −EXi| ≥ ε) = P((X̄n − µ)2 ≥ ε2)

≤ E(X̄n − µ)2

ε2

=
VarX̄n

ε2

=

∑n
i=1 VarXi

n

ε2

=
σ2

nε2

where the second step follows from Markov’s inequality. This goes to zero as n→∞.

Now let’s take another look at the definition of generalization:

lim
n→∞

P{|In[fn]− I[fn]| ≥ ε} = 0, ∀ε

We are really saying that a learning algorithm that generalizes is one for which, as the number of
training samples increases, the empirical loss converges in probability to the true loss, regardless
of the underlying distribution of the data. Notice that this looks a lot like the weak law of large
numbers. There’s an important complication, though: even though we assume the training data
(xi, yi) are i.i.d. samples from an unknown distribution, the random variables V (fS(xi), yi) are
not i.i.d., because the function fS depends on all of the training points simultaneously. We will
talk about how to prove that learning algorithms generalize in class.
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