
Statistical Learning Theory  
and  

Applications 
9.520/6.860 in Fall 2016

Class Times:
Monday and Wednesday 1pm-2:30pm in 46-3310 Units: 3-0-9 H,G
Web site: http://www.mit.edu/~9.520/

Email Contact :
9.520@mit.edu

Instructors: Tomaso Poggio, Lorenzo Rosasco
Guest lectures: Charlie Frogner, Carlo Ciliberto, Alessandro Verri
TAs: Hongyi Zhang, Max Kleiman-Weiner, Brando Miranda, Georgios Evangelopoulos

Web: http://www.mit.edu/~9.520/
Office Hours: Friday 2-3 pm, 46-5156 (Poggio Lab lounge)

Further Info:9.520/6.860 is currently NOT using the Stellar system.
Registration: Fill online registration form. 
Mailing list:Registered students will be added in the course mailing list (9520students)

http://www.mit.edu/~9.520/
mailto:9.520@mit.edu


Class 2: Mathcamps 

• Functional analysis (~45mins) 

• Probability (~45mins) 

Class 
http://www.mit.edu/~9.520/

Functional Analysis: 
Linear and  Euclidean spaces 
scalar product, orthogonality 
orthonormal bases, norms and semi-norms, 
Cauchy sequence and complete spaces  
Hilbert spaces, function spaces  
and linear functional, Riesz representation  
theorem, convex functions,  functional calculus.

Probability Theory: 
Random Variables (and related  
concepts),  Law of Large Numbers,  
Probabilistic Convergence,  
Concentration  Inequalities.

Linear Algebra 
Basic notion and definitions: matrix and  
vectors norms, positive, symmetric,  
invertible  matrices, linear systems,  
condition number. 

http://www.mit.edu/~9.520/


9.520: Statistical Learning Theory and Applications
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• Course focuses on regularization techniques for supervised 
learning.  

• Support Vector Machines, manifold learning, sparsity, batch and 
online supervised learning, feature selection, structured 
prediction, multitask learning.  

• Optimization theory critical for machine learning (first order 
methods, proximal/splitting techniques). 

• In the final part focus on emerging deep learning theory 

The goal of this class is to provide the theoretical knowledge and 
the basic intuitions needed to use and develop effective machine 
learning solutions to a variety of problems. 



Rules of the game:  

• Problem sets: 4 
• Final project: 2 weeks effort, you have to give us title + abstract before November 23 
• Participation: check-in/sign in every class 
• Grading: Psets (60%) + Final Project (30%) + Participation (10.0%) 

Slides on the Web site (most classes on blackboard) 
Staff mailing list is 9.520@mit.edu  
Student list will be 9.520students@mit.edu  
Please fill form (independent of MIT/Harvard registration)!! 

send email to us if you want to be added  
to mailing list

Class 
http://www.mit.edu/~9.520/

http://www.mit.edu/~9.520/
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Material: 

Most classes on blackboard. 

Book draft:  
Rosasco and T. Poggio, Machine Learning: a Regularization Approach, MIT-9.520 Lectures 
Notes, Manuscript, Dec. 2015 (chapters will be provided). 

Office hours: Friday 2-3 pm in 46-5156, Poggio Lab lounge 

Tentative dates

Problem Sets (due dates will be 11 days) 
Problem Set 1: 26 Sep. (due: 10/05) 
Problem Set 2: 12 Oct. (due: 10/24) 
Problem Set 3: 26 Oct. (due: 11/07) 
Problem Set 4: 14 Nov. (due: 11/23)  

Final projects:

Announcement/projects are open: Nov. 16  
Deadline to suggest/pick suggestions (title/abstract):  Nov. 23  
Submission: Dec. xx 

Class 
http://www.mit.edu/~9.520/

http://www.mit.edu/~9.520/
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The course project can be: 

• Research project (suggested by you): Review, theory and/or 
application (~4 page report in NIPS format).  

• Wikipedia articles (suggested list by us): Editing or creating new 
Wikipedia entries on a topic from the course syllabus.  

• Coding (suggested by you or us): Implementation of one of the 
course algorithms and integration on the open-source library GURLS 
(Grand Unified Regularized Least Squares) https://github.com/LCSL/
GURLS 

– Research project reports will be archived online (on a dedicated 
page on our web) 

– Wikipedia entries links will be archived (on a dedicated page on our 
web), https://docs.google.com/document/d/
1RpLDfy1yMBNaSGqsdnl7w1GgzgN4Ib-wPaLwRJJ44mA/edit 

Final Project

https://docs.google.com/document/d/1RpLDfy1yMBNaSGqsdnl7w1GgzgN4Ib-wPaLwRJJ44mA/edit


Class http://www.mit.edu/~9.520/: big picture

• Classes 3-9 are the core: foundations + regularization 

• Classes 10-22 are state-of-the-art topics for research in — and 
applications of — ML 

• Classes 23-25 are partly unpublished theory on multilayer 
networks (DCLNs)

http://www.mit.edu/~9.520/


• Today is big picture day…

• Be ready for quite a bit of material

• If you need a complete renovation of your Fourier analysis or linear 
algebra background…you should not be in this class.

Class 
http://www.mit.edu/~9.520/

http://www.mit.edu/~9.520/


Summary of today’s overview

• Motivations for this course: a golden age for new AI, the key 
role of Machine Learning, CBMM 

• A bit of history: Statistical Learning Theory, Neuroscience 

• A bit of history: applications 

• Now:  
- why depth works 
- why is neuroscience important  
- the challenge of sampling complexity 



The problem of (human) intelligence is one of the great problems in 
science, probably the greatest. 

Research on intelligence:  
• a great intellectual mission: understand the brain, reproduce it in machines 
• will help develop intelligent machines 

These advances will be critical to of our society’s 
• future prosperity 
• education,  health,  security 
• solve all other great problems in science

The problem of intelligence: 

how it arises in the brain and how to replicate it


 in machines



Third Annual NSF Site Visit, June 8 – 9, 2016

CBMM’s main goal is to make progress in the 
science of intelligence which enables better 

engineering of intelligence. 
  

Science + Engineering 
of Intelligence



Machine Learning
Computer Science

Science+ Technology of 
Intelligence

Interdisciplinary

Cognitive Science

Neuroscience
Computational 
Neuroscience
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Third CBMM Summer School, 2016
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Recent Stats and Activities 
Summer school at Woods Hole:             
Our flagship initiative, very good!

Brains, Minds & Machines Summer Course
An intensive three-week course will give advanced students a “deep 

end” introduction to the problem of intelligence

http://cbmm.mit.edu/summer-school/2016


Third Annual NSF Site Visit, June 8 – 9, 2016

Intelligence in games: the beginning



Third Annual NSF Site Visit, June 8 – 9, 2016



Recent progress in AI



•  AlphaGo 

• Mobileye

The 2 best examples of the 
success of new ML







Real Engineering: Mobileye



Third Annual NSF Site Visit, June 8 – 9, 2016

Real Engineering: Mobileye



Third Annual NSF Site Visit, June 8 – 9, 2016

History



Third Annual NSF Site Visit, June 8 – 9, 2016

Desimone & Ungerleider 1989; vanEssen+Movshon

History: same hierarchical 
architectures in the cortex, in 
models of vision and in deep 

networks



The Science of Intelligence

The science of intelligence was at the roots 
of today’s engineering success 

We need to make another basic effort on it 

• for the sake of basic science 
• for the engineering of tomorrow



Summary of today’s overview

• Motivations for this course: a golden age for new AI, the key 
role of Machine Learning, CBMM 

• A bit of history: Statistical Learning Theory, Neuroscience 

• A bit of history: applications 

• Now:  
- why depth works 
- why is neuroscience important  
- the challenge of sampling complexity



INPUT OUTPUTf
Given a set of l examples (data) 

  

Question: find function f such that  

          

is a good predictor of y for a future input x (fitting the data is not enough!)

Statistical Learning Theory:

supervised learning (~1980-2010)




y

x

= data from f

=  approximation of   f

= function f

Generalization:  

estimating value of function where there are no data (good generalization means 
predicting the function well; important is for empirical or validation error to be a good 
proxy of the prediction error)


Statistical Learning Theory:

prediction, not description




(92,10,…)
(41,11,…)

(19,3,…)

(1,13,…)

(4,24,…)
(7,33,…)

(4,71,…)

Regression

Classification

Statistical	
  Learning	
  Theory:	
  
supervised	
  learning	
  



Statistical Learning Theory:

part of mainstream math not just statistics


(Valiant, Vapnik, Smale, Devore...)




The learning problem: summary so far

There is an unknown probability distribution on the product
space Z = X � Y , written µ(z) = µ(x , y). We assume that X is
a compact domain in Euclidean space and Y a bounded subset
of R. The training set S = {(x1, y1), ..., (xn, yn)} = {z1, ...zn}

consists of n samples drawn i.i.d. from µ.

H is the hypothesis space, a space of functions f : X ⇤ Y .

A learning algorithm is a map L : Z n ⇤ H that looks at S and
selects from H a function fS : x⇤ y such that fS(x) ⇥ y in a
predictive way.

Tomaso Poggio The Learning Problem and Regularization

Statistical Learning Theory:

supervised learning




Statistical Learning Theory




The ERM problem does not have a predictive solution in general 
(just fitting the data does not work).  

Choosing an appropriate hypothesis space H  (for instance a 
compact set of continuous functions) can guarantee 
generalization. A necessary and sufficient condition for 
generalization is that H is uGC.  

Related concept, measuring complexity of the hypothesis space, 
are: 

 VC dimension, V_gamma dimension, Rademacher numbers..

Statistical	
  Learning	
  Theory:	
  
generalization	
  follows	
  from	
  control	
  of	
  complexity



J. S. Hadamard, 1865-1963

A problem is well-posed if its solution 

exists, unique and  

is stable, eg depends continuously on the data (here 
examples) 

Statistical Learning Theory:

the learning problem should be well-posed



This is an example of foundational results  
in learning theory...



Conditions for generalization in learning theory 
 have deep, almost philosophical, implications: 

they can be regarded as equivalent conditions that 
guarantee a  

theory to be predictive (that is scientific) 

‣  theory must be chosen from a small hypothesis set 

‣  theory should not change much with new data...most of the time (stability)

Statistical Learning Theory:

foundational theorems



Equation includes splines, Radial Basis Functions and SVMs 
(depending on choice of K and V). 

implies

For a review, see Poggio and Smale, 2003; see also Schoelkopf and Smola, 
2002; Bousquet, O., S. Boucheron and G. Lugosi; Cucker and Smale; Zhou and 
Smale...

Classical algorithm:

Regularization in RKHS (eg. kernel machines)



implies

Classical algorithm:

Regularization in RKHS (eg. kernel machines)

Remark (for later use): 

Classical kernel machines correspond to 
shallow networks

X1

f

Xl



Summary of today’s overview

• Motivations for this course: a golden age for new AI, the key 
role of Machine Learning, CBMM 

• A bit of history: Statistical Learning Theory, Neuroscience 

• A bit of history: applications 

• Now:  
- why depth works 
- why is neuroscience important  
- the challenge of sampling complexity



LEARNING THEORY 
+  

ALGORITHMS

COMPUTATIONAL 
 NEUROSCIENCE:  

models+experiments
How visual cortex works 

Theorems on foundations of learning 

Predictive algorithms

Sung & Poggio 1995, also Kanade& 
Baluja....

Learning	
  



LEARNING THEORY 
+  

ALGORITHMS

COMPUTATIONAL 
 NEUROSCIENCE:  

models+experiments
How visual cortex works 

Theorems on foundations of learning 

Predictive algorithms

Sung & Poggio 1995

Engineering of Learning






LEARNING THEORY 
+  

ALGORITHMS

COMPUTATIONAL 
 NEUROSCIENCE:  

models+experiments
How visual cortex works 

Theorems on foundations of learning 

Predictive algorithms

Face detection has been 
available in digital cameras for 
a few years now

Engineering of Learning




LEARNING THEORY 
+  

ALGORITHMS

COMPUTATIONAL 
 NEUROSCIENCE:  

models+experiments
How visual cortex works 

Theorems on foundations of learning 

Predictive algorithms

Papageorgiou&Poggio, 1997, 2000  
also Kanade&Scheiderman

Engineering of Learning


People detection



LEARNING THEORY 
+  

ALGORITHMS

COMPUTATIONAL 
 NEUROSCIENCE:  

models+experiments
How visual cortex works 

Theorems on foundations of learning 

Predictive algorithms

Papageorgiou&Poggio, 1997, 2000  
also Kanade&Scheiderman

Engineering of Learning


Pedestrian detection
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Some other examples of 

past ML applications 


from my labComputer Vision 
• Face detection 
• Pedestrian detection 
• Scene understanding 
• Video categorization 
• Video compression 
• Pose estimation 
Graphics  
Speech recognition 
Speech synthesis 
Decoding the Neural Code 
Bioinformatics 
Text Classification 
Artificial Markets 
Stock option pricing 
….



Decoding the neural code: Matrix-like read-out from the brain




The end station of the ventral stream 

in visual cortex is IT



77 objects, 

8 classes

Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005

Reading-out the neural code in AIT



Recording at each recording site during passive viewing

100 ms 100 ms

• 77 visual objects 
• 10 presentation repetitions per object 
• presentation order randomized and counter-balanced

time



Example of one AIT cell



Decoding the neural code … using a classifier

x

Learning 
from (x,y) 
pairs

y ∈ {1,…,8}



Categorization 

• Toy 

• Body 

• Human Face 

• Monkey Face 

• Vehicle 

• Food 

• Box 

• Cat/Dog

Video speed: 1 
frame/sec 

Actual presentation 
rate: 5 objects/sec Neuronal population 

activity

Classifier prediction

Hung, Kreiman, Poggio, DiCarlo. Science 2005

We can decode the brain’s code and read-out from neuronal populations: 
reliable object categorization (>90% correct) using ~200 arbitrary AIT “neurons”



We can decode the brain’s 
code and read-out from 
neuronal populations: 

 
reliable object categorization 
using ~100 arbitrary AIT sites

Mean single trial performance

• [100-300 ms] interval

• 50 ms bin size



⇒ Bear (0° view)

⇒ Bear (45° view)

Learning: image analysis




UNCONVENTIONAL GRAPHICS

Θ = 0° view ⇒

Θ = 45° view ⇒

Learning: image synthesis




Memory Based Graphics DV
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A- more in a moment

 Tony Ezzat,Geiger, Poggio, SigGraph 2002

Mary101



Phone Stream

Trajectory  
Synthesis

MMM

Phonetic Models

Image Prototypes

 1. Learning 

System learns from 4 mins 
of video face appearance 
(Morphable Model) and  
speech dynamics of the 

person

 2. Run Time 

For any speech input the system 
provides as output a synthetic video 

stream





B-Dido



C-Hikaru



D-Denglijun



E-Marylin



F-Katie Couric

http://people.csail.mit.edu/tonebone/research/mary101/news/300tdy_couric_mitvideo_020520.asf%0A


G-Katie



H-Rehema



I-Rehemax



L-real-synth

A Turing test: what is real and what is synthetic?



Summary of today’s overview

• Motivations for this course: a golden age for new AI, the key 
role of Machine Learning, CBMM 

• A bit of history: Statistical Learning Theory, Neuroscience 

• A bit of history: applications 

• Now:  
- why depth works 
- why is neuroscience important  
- the challenge of sampling complexity



How do the learning machines described by classical learning theory -- 
such as kernel machines -- compare with brains?  

❑ One of the most obvious differences is the ability of people and 
animals to learn from very few examples (“poverty of stimulus” problem).  

❑ A comparison with real brains offers another,  related, challenge to 
learning theory. Classical  “learning algorithms” correspond to one-layer 
architectures. The cortex suggests a hierarchical architecture.  

Thus…are hierarchical architectures with more layers important perhaps 
for the sample complexity issue?  Notices of the American Mathematical Society (AMS), Vol. 

50, No. 5, 
537-544, 2003. 
The Mathematics of Learning: Dealing with Data 
Tomaso Poggio and Steve Smale 

Classical learning algorithms:  
“high” sample complexity and shallow architectures
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can be “written” as  shallow networks: the 
value of K corresponds to the “activity” of 
the “unit” for the input and the     
correspond to “weights”


bKcf i
l

i i +=∑ ),()( xxx

Kernel machines…

K

+

C1 C n CN

X Y

f

K K

Classical kernel machines are equivalent to shallow networks



Deep and shallow networks: universality

Cybenko, Girosi, ….

g(x) = ci
i=1

r

∑ < wi , x > +bi +



When is deep better than shallow

f (x1, x2,..., x8 ) = g3(g21(g11(x1, x2 ),g12 (x3, x4 ))g22 (g11(x5, x6 ),g12 (x7, x8 )))

Theorem: 
why and when are deep networks better than shallow network?

Mhaskar, Poggio, Liao, 2016

Theorem (informal statement)
Suppose that a function of  d variables is compositional . Both shallow and deep 
network can approximate f equally well. The  number of parameters of the shallow 
network depends  exponentially on d as               with the dimension whereas for  
the deep network depends linearly on d that is  

O(ε −d )
O(dε −2 )



The curse of dimensionality, 
the blessing of compositionality

For compositional functions deep networks — but not 
shallow ones — can avoid the curse of dimensionality, 
that is the exponential dependence on the dimension 
of the network complexity and of its sample complexity.



Summary of today’s overview

• Motivations for this course: a golden age for new AI, the key 
role of Machine Learning, CBMM 

• A bit of history: Statistical Learning Theory, Neuroscience 

• A bit of history: applications 

• Now:  
- why depth works 
- why is neuroscience important  
- to the brain from physics via depth? 
- the challenge of sampling complexity



STC Annual Meeting, 2016

Key recent advances  
in the engineering of intelligence   

have their roots  
in basic science of the brain

CBMM: motivations



[software available online]
Riesenhuber & Poggio 1999, 2000;  Serre Kouh Cadieu 
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

• It is in the family of “Hubel-Wiesel” 
models (Hubel & Wiesel, 1959: qual. 
Fukushima, 1980: quant; Oram & 
Perrett, 1993: qual; Wallis & Rolls, 
1997; Riesenhuber & Poggio, 1999; 
Thorpe, 2002; Ullman et al., 2002; 
Mel, 1997; Wersing and Koerner, 
2003; LeCun et al 1998: not-bio; Amit 
& Mascaro, 2003: not-bio; Hinton, 
LeCun, Bengio not-bio; Deco & Rolls 
2006…) 

• As a biological model of 
object recognition in the 
ventral stream – from V1 to 
PFC -- it is perhaps the most 
quantitatively faithful to 
known neuroscience data

	
  	
  Recogni)on	
  in	
  Visual	
  Cortex



Hierarchical feedforward models of the ventral stream 
 do “work”







Summary of today’s overview

• Motivations for this course: a golden age for new AI, the key 
role of Machine Learning, CBMM 

• A bit of history: Statistical Learning Theory, Neuroscience 

• A bit of history: applications 

• Now:  
- why depth works 
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How do the learning machines described by classical learning theory -- 
such as kernel machines -- compare with brains?  

❑ One of the most obvious differences is the ability of people and 
animals to learn from very few examples (“poverty of stimulus” problem).  

❑ A comparison with real brains offers another,  related, challenge to 
learning theory. Classical  “learning algorithms” correspond to one-layer 
architectures. The cortex suggests a hierarchical architecture.  

Thus…are hierarchical architectures with more layers the answer to the 
sample complexity issue?  Notices of the American Mathematical Society (AMS), Vol. 

50, No. 5, 
537-544, 2003. 
The Mathematics of Learning: Dealing with Data 
Tomaso Poggio and Steve Smale 

Classical learning algorithms:  
“high” sample complexity and shallow architectures



The first phase (and successes) of ML:  
                        supervised learning, big data:   

Today’s science, tomorrow’s engineering:
learn like children learn

n→∞

The next phase of ML: implicitly supervised learning, 
learning like children do, small data: n→ 1

from programmers… 
…to labelers… 
…to computers that learn like children…
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