Statistical Learning Theory
and

Applications
9.520/6.860 in Fall 2016

Class Times:
Monday and Wednesday 1pm-2:30pm in 46-3310 Units: 3-0-9 H,G

Web site: http://www.mit.edu/~9.520/

Email Contact :
9.520@mit.edu

Instructors: Tomaso Poggio, Lorenzo Rosasco
Guest lectures: Charlie Frogner, Carlo Ciliberto, Alessandro Verri
TAs: Hongyi Zhang, Max Kleiman-Weiner, Brando Miranda, Georgios Evangelopoulos

Web: http://www.mit.edu/~9.520/
Office Hours: Friday 2-3 pm, 46-5156 (Poggio Lab lounge)

Further Info:9.520/6.860 is currently NOT using the Stellar system.
Registration: Fill online registration form.
Mailing list:Registered students will be added in the course mailing list (9520students)
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mailto:9.520@mit.edu

Class
http:/ www.mit.edu/~9.520/

Class 2: Mathcamps

* Functional analysis (~45mins)

4 ) Functional Analysis: )

Linear Algebra Linear and Euclidean spaces
scalar product, orthogonality
Basic notion and definitions: matrix and orthonormal bases, norms and semi-norms,
vectors norms, positive, symmetric, Cauchy sequence and complete spaces
invertible matrices, linear systems, Hilbert spaces, function spaces
condition number. and linear functional, Riesz representation
theorem, convex functions, functional caIcqus./

\_ J

N . Probability Theory:
* Pmbab”'ty (~45m|ns) Random Variables (and related
concepts), Law of Large Numbers,
Probabilistic Convergence,
Concentration Inequalities.



http://www.mit.edu/~9.520/

9.520: Statistical Learning Theory and Applications

e Course focuses on regularization techniques for supervised
learning.

e Support Vector Machines, manifold learning, sparsity, batch and
online supervised learning, feature selection, structured
prediction, multitask learning.

e Optimization theory critical for machine learning (first order
methods, proximal/splitting techniques).

* |n the final part focus on emerging deep learning theory

The goal of this class is to provide the theoretical knowledge and
the basic intuitions needed to use and develop effective machine
learning solutions to a variety of problems.



Class
http:/www.mit.edu/~9.520/

Rules of the game:

* Problem sets: 4
* Final project: 2 weeks effort, you have to give us title + abstract before November 23

* Participation: check-in/sign in every class
* Grading: Psets (60%) + Final Project (30%) + Participation (10.0%)

Slides on the Web site (most classes on blackboard)

Staff mailing list is 9.520@mit.edu

Student list will be 9.520students@mit.edu

Please fill form (independent of MIT/Harvard reqistration)!!

send email to us if you want to be added
to mailing list


http://www.mit.edu/~9.520/

Class
http:/www.mit.edu/~9.520/

Material:
Most classes on blackboard.

Book draft:
Rosasco and T. Poggio, Machine Learning: a Regularization Approach, MIT-9.520 Lectures
Notes, Manuscript, Dec. 2015 (chapters will be provided).

Office hours: Friday 2-3 pm in 46-5156, Poggio Lab lounge

Tentative dates

Problem Sets (due dates will be 11 days)
Problem Set 1: 26 Sep. (due: 10/05)
Problem Set 2: 12 Oct. (due: 10/24)
Problem Set 3: 26 Oct. (due: 11/07)
Problem Set 4: 14 Nov. (due: 11/23)

Final projects:

Announcement/projects are open: Nov. 16

Deadline to suggest/pick suggestions (title/abstract): Nov. 23
Submission: Dec. xx


http://www.mit.edu/~9.520/

Final Project

The course project can be:

e Research project (suggested by you): Review, theory and/or
application (~4 page report in NIPS format).

e Wikipedia articles (suggested list by us): Editing or creating new
Wikipedia entries on a topic from the course syllabus.

e Coding (suggested by you or us): Implementation of one of the
course algorithms and integration on the open-source library GURLS

(Grand Unified Regularized Least Squares) https://github.com/LCSL/
GURLS

— Research project reports will be archived online (on a dedicated
page on our web)

— Wikipedia entries links will be archived (on a dedicated page on our
web), https://docs.google.com/document/d/
1RplL Dfy1yMBNaSGasdnl/w1GgzgN4lb-wPal wRJJ44mA/edit



https://docs.google.com/document/d/1RpLDfy1yMBNaSGqsdnl7w1GgzgN4Ib-wPaLwRJJ44mA/edit

Class http:/www.mit.edu/~9.520/: big picture

e Classes 3-9 are the core: foundations + regularization

e Classes 10-22 are state-of-the-art topics for research in — and
applications of — ML

e Classes 23-25 are partly unpublished theory on multilayer
networks (DCLNS)


http://www.mit.edu/~9.520/

Class
http:/www.mit.edu/~9.520/

e Today is big picture day...
e Be ready for quite a bit of material

e If you need a complete renovation of your Fourier analysis or linear
algebra background...you should not be in this class.


http://www.mit.edu/~9.520/

Summary of today’s overview

Motivations for this course: a golden age for new Al, the key
role of Machine Learning, CBMM

A bit of history: Statistical Learning Theory, Neuroscience
A bit of history: applications

Now:

- why depth works

- why Is neuroscience important
- the challenge of sampling complexity



The problem of intelligence:
how it arises in the brain and how to replicate it
In machines

The problem of (human) intelligence is one of the great problems in
science, probably the greatest.

Research on intelligence:

® a great intellectual mission: understand the brain, reproduce it in machines
® will help develop intelligent machines

These advances will be critical to of our society’s
® future prosperity

® cducation, health, security
® solve all other great problems in science



CENTER FOR

Brains 9Ocience + Engineering

Minds+ .
Machines of Intelligence

CBMM'’s main goal is to make progress in the
science of intelligence which enables better
engineering of intelligence.

EEEEEEEEE

Machines Third Annual NSF Site Visit, June 8 — 9, 2016



Interdisciplinary

Machine Learning
Computer Science Neuroscience

Computational
Cognitive Science Neuroscience

Science+ Technology of
Intelligence



Centerness:
collaborations across different disciplines and labs
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Recent Stats and Activities
Hebrew U.
Shashua
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Machines Third CBMM Summer School, 2016




Recent Stats and Activities

Summer school at Woods Hole:
Our flagship initiative, very good!

Brains, Minds & Machines Summer Course
An intensive three-week course will give advanced students a “deep
end” introduction to the problem of intelligence

Brains
Minds+

| CENTER FOR
Machines



http://cbmm.mit.edu/summer-school/2016

Intelligence in games: the beginning
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The 2 best examples of the
success of new ML

- AlphaGo

* Mobileye
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Real Englneerlng Mobileye
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Real Engineering: Mobiley
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History: same hierarchical
architectures in the cortex, in
V2 models of vision and in deep
networks
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The Science of Intelligence

The science of intelligence was at the roots
of today’s engineering success

We need to make another basic effort on it

 for the sake of basic science
» for the engineering of tomorrow

EEEEEEEEE
Brains
Minds+
Machines




Summary of today’s overview

A bit of history: Statistical Learning Theory, Neuroscience
A bit of history: applications

Now:

- why depth works

- why Is neuroscience important

- the challenge of sampling complexity



Statistical Learning Theory:
supervised learning (~1980-2010)

—

INPUT = — QU TPUT
—
— —

Given a set of | examples (data)
{(xlsyl)a(xza)b)a---a(xw)Q)}

Question: find function f such that
J(x)=y

is a good predictor of y for a future input x (fitting the data is not enough!)



Statistical Learning Theory:
prediction, not description

= function f -

@ -=datafromf | | / \ /
' —-__-_,_---"' T T 4 “
. .

= approximation of f

Generalization:

estimating value of function where there are no data (good generalization means
predicting the function well; important is for empirical or validation error to be a good
proxy of the prediction error)



Statistical Learning Theory:
supervised learning

R( Regression
l

Classification




Statistical Learning Theory:
part of mainstream math not just statistics
(Valiant, Vapnik, Smale, Devore...)

BULLETIN (Now Saries) OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 39, Number 1. Pages 1-49

S 273 00T9(01)00523.5

Article electromically published on October 5, 2001

ON THE MATHEMATICAL FOUNDATIONS OF LEARNING

FELIPE CUCKER AXD STEVE SMALE>

The problem of learming 15 arguably at the
very core of the problem of mtelligence,
both bi

T. Pogzio and C.R. Shelton

INTRODUCTION

(1) A main theme of this report is the 1olatlon-lnp of apprommnon to learning and
the primary role of sampling (inductive i ‘v to emphasize relations
of the theory of learning to th¢ mainstream ot nmtlwumu_\ jn particular, there
are large roles for probability theory: . uch past squares, and for
tools and ideas from linear algebra and linear analysis. An advantage of doing this
1= that communication is facilitated and the power of core mathematics is more
easily brought to bear.




Statistical Learning Theory:
supervised learning

There is an unknown probability distribution on the product
space Z = X x Y, written u(z) = u(x, y). We assume that X is
a compact domain in Euclidean space and Y a bounded subset
of R. The training set S = {(X1,¥1),.... Xn, ¥n)} = {21, ...Zn}

consists of n samples drawn i.i.d. from .
'H is the hypothesis space, a space of functions f: X — Y.

A learning algorithm is a map L : Z" — H that looks at S and
selects from H a function fs : X — y such that fs(x) ~ y in a
predictive way.



Statistical Learning Theory

Given a function f. a loss function V. and a probability distribution s
over Z, the expected or true error of f is:

A — 1, V[f. 2] — / V(f. 2)dp(2) (1)
JZ

which is the expected loss on a hew example drawn at random from

/!.
The empirical error of f is:

Is[f] — %Z V(f.z2) (@)

A very natural requirement for fg is distribution independent
generalization

i, lim |ls[fs] — /[fs] = 0 in probability (3)

In other words, the training error for the solution must converge to the
expected error and thus be a “proxy” for it. Otherwise the solution
would not be “predictive”.



Statistical Learning Theory:
generalization follows from control of complexity

The ERM problem does not have a predictive solution in general
(just fitting the data does not work).

Choosing an appropriate hypothesis space H (for instance a
compact set of continuous functions) can guarantee
generalization. A necessary and sufficient condition for
generalization is that H is uGC.

Related concept, measuring complexity of the hypothesis space,
are:

VC dimension, V_gamma dimension, Rademacher numbers..



Statistical Learning Theory:
the learning problem should be well-posed

{

A problem is well-posed if its solution

exists, unique and J. 5. Hadamard, 1865-1963

IS stable, eg depends continuously on the data (here
examples)



This is an example of foundational results
In learning theory...



Statistical Learning Theory:
foundational theorems

Conditions for generalization in learning theory
have deep, almost philosophical, implications:

they can be regarded as equivalent conditions that
guarantee a
theory to be predictive (that is scientific)

» theory must be chosen from a small hypothesis set

» theory should not change much with new data...most of the time (stability)



Classical algorithm:
Regularization in RKHS (eg. kernel machines)

felH

14 2
min ;E V(f(x)-y)+h | f HK_

implies

J(x) = E:laiK(Xﬂxi)

Equation includes splines, Radial Basis Functions and SVMs
(depending on choice of K and V).

For a review, see Poggio and Smale, 2003; see also Schoelkopf and Smola,
2002; Bousquet, O., S. Boucheron and G. Lugosi; Cucker and Smale; Zhou and
Smale...



Classical algorithm:
Regularization in RKHS (eg. kernel machines)

fel

14 2
min ;E V(f(x)-y)+M | f HK_

implies

J(x) = E:laiK(Xﬂxi)

Remark (for later use):

Classical kernel machines correspond to
shallow networks




Summary of today’s overview

A bit of history: applications

Now:

- why depth works

- why Is neuroscience important

- the challenge of sampling complexity



Learning

{ . .
f@) =3 eK(xi.%) Theorems on foundations of learning
1=1 i

N

Predictive algorithms

Sung & Poggio 1995, also Kanade&
Baluja....

How visual cortex works




Engineering of Learning

Sung & Poggio 1995







Engineering of Learning

Face detection has been
available in digital cameras for
a few years now




Engineering of Learning

People detection

Papageorgiou&Poggio, 1997, 2000
also Kanade&Scheiderman




Engineering of Learning

Pedestrian detection

Papageorgiou&Poggio, 1997, 2000
also Kanade&Scheiderman




Some other examples of
past ML applications
Computer Vision frOm my Iab

Face detection
Pedestrian detection
Scene understanding
Video categorization
Video compression
- Pose estimation
Graphics
Speech recognition
Speech synthesis
Decoding the Neural Code
Bioinformatics
Text Classification
Artificial Markets
Stock option pricing

47



Decoding the neural code: Matrix-like read-out from the brain

Perceived / reported object
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The end station of the ventral stream
In visual cortex is IT

¢ command

Categorical judgments, 140-190 1
decision making

120-160 m:

Simple visual forms,
edges, comers

/VQ - JmMms

.;.-L sdiate visual
M object
faces, objects
\
e To spinal cord
e To finger muscle o e 160-220 ms

180-260 ms



Reading-out the neural code in AIT

!

/fobjects, B ONEEEE
8 classes

|
|
S S EHOESE |
EEEEEEEE |

NEEESEENERE]
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Chou Hung, Gabriel Kreiman, James DiCarlo, Tomaso Poggio, Science, Nov 4, 2005




Recording at each recording site during passive viewing

time — 100 ms| 100 ms

* /7 visual objects
« 10 presentation repetitions per object
* presentation order randomized and counter-balanced



Example of one AIT cell
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Decoding the neural code ... using a classifier

cat/dog
Population activity ' human face
| | || | neuron 1 r_“]
AL toys
food
monkey face

white box contours

hand/body

Learning
from (x,y) |
palrs vehicles

Categorization y S {1 - ,8}

8 groups




We can decode the brain’s code and read-out from neuronal populations:
reliable object categorization (>90% correct) using ~200 arbitrary AIT “neurons”

Categorization

Toy
Body

Video speed: 1 Human Face

frame/sec

Monkey Face
Vehicle

Food

Box

Cat/Dog

Actual presentation
rate: 5 objects/sec

Hung, Kreiman, Poggio, DiCarlo. Science 2005



We can decode the brain’s
code and read-out from
neuronal populations:

reliable object categorization
using ~100 arbitrary AIT sites

« [100-300 ms] interval

« 50 ms bin size

100 % -

50 % A

Classification performance

chance (1/8)

1 4 16 64 256

Number of sites



Learning: image analysis

= Bear (0° view)

N

= Bear (45° view)




Learning: image synthesis

UNCONVENTIONAL GRAPHICS

O =0° view =

O =45° view =









Mary101

A- more in a moment

Tony Ezzat,Geiger, Poggio, SigGraph 2002



1. Learning

System learns from 4 mins
of video face appearance
(Morphable Model) and
speech dynamics of the
person

2. Run Time

For any speech input the system
provides as output a synthetic video

stream
Phone Stream
Trajectory
Synthe5|s Phonetic Models
MMM Image Prototypes
|

I QI " I






B-Dido



C-Hikaru



D-Denglijun



E-Marylin



F-Katie Couric



http://people.csail.mit.edu/tonebone/research/mary101/news/300tdy_couric_mitvideo_020520.asf%0A




H-Rehema






A Turing test: what is real and what is synthetic?

L-real-synth



Summary of today’s overview

Now:

- why depth works

- why Is neuroscience important

- the challenge of sampling complexity



Classical learning algorithms:
“high” sample complexity and shallow architectures

How do the learning machines described by classical learning theory --
such as kernel machines -- compare with brains?

d A comparison with real brains offers another, related, challenge to
learning theory. Classical “learning algorithms” correspond to one-layer
architectures. The cortex suggests a hierarchical architecture.

Thus...are hierarchical architectures with more layers important perhaps

fOr 'the Sample Complexity issue? Notices of the American Mathematical Society (AMS), Vol.
50, No. 5,

537-544, 2003.
The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale



Computation in a neural net

¢ N
N2 9
<<\ QY | Q\’b%
— — — = =% “clown fish”

f(x)=fr(... fa(f1(x)))



mii:e

container s

motor scooter

mite container ship motor scooter lecpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

» >

Y il '

gfl e musnroom cnerry adagascar cat
convertible agaric dalmatia squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Krizhevsky et al. NIPS 2012



Computation in a neural net

Rectified linear unit (RelLU)

5 :
. /
0 .
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Classical kernel machines are equivalent to shallow networks

Kernel machines...

X Y

f®)= P KX+ e

can be “written” as shallow networks: the
value of K corresponds to the “activity” of
the “unit” for the input and the
correspond to “weights”

CN




Deep and shallow networks: universality

Theorem Shallow, one-hidden layer networks with a nonlinear ¢(x) which
1s not a polynomial are universal. Arbitrarily deep networks with a nonlinear
o(x) (including polynomials) are universal.

g(x)= 2ci|< W, ,X > +bi|+

\ C /
/\/}\/\/'\

Cybenko, Girosi, ....



Theorem:
why and when are deep networks better than shallow network?

f(xl 9x2 ,...,XS) — g3(g21 (gll(xl axz)aglz(x3 9x4 ))gzz (gll(-xs 9-x6),g12 (-x7 9-x8 )))

X1 X2 X3 X4 X5 Xg X7 Xg xl X2 X3 X4 XS x6 X7 x8

Theorem (informal statement)
Suppose that a function of d variables is compositional . Both shallow and deep
network can approximate f equally well. The number of parameters of the shallow

network depends exponentially on d as O(g™?) with the dimension whereas for
the deep network depends linearly on d that is O(de™)

Center for Brains,
Minds & Machines

Mhaskar, Poggio, Liao, 2016



The curse of dimensionality,
the blessing of compositionality

For compositional functions deep networks — but not
shallow ones — can avoid the curse of dimensionality,
that is the exponential dependence on the dimension
of the network complexity and of its sample complexity.



Summary of today’s overview

why is neuroscience important
to the brain from physics via depth?
the challenge of sampling complexity



CBMM: motivations

Key recent advances
In the engineering of intelligence
have their roots
in basic science of the brain

i | CENTERFOR

- | Brains

: | Minds+

“ | Machines STC Annual Meeting, 2016



Recognition in Visual Cortex

« ltisin the family of “Hubel-Wiesel”
models (Hubel & Wiesel, 1959: qual.
Fukushima, 1980: quant; Oram &
Perrett, 1993: qual; Wallis & Rolls,
1997; Riesenhuber & Poggio, 1999;
Thorpe, 2002; Uliman et al., 2002;
Mel, 1997; Wersing and Koerner,
2003; LeCun et al 1998: not-bio; Amit
& Mascaro, 2003: not-bio; Hinton,
LeCun, Bengio not-bio; Deco & Rolls
2006...)

* As a biological model of

object recognition in the
) g 52 ventral stream — from V1 to
szbs e90ee PFC -- it is perhaps the most
0008 000! e® o S1 quantitatively faithful to

known neuroscience data

_ . _ Riesenhuber & Poggio 1999, 2000; Serre Kouh Cadieu
[Software available 0n||ne] Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007



Hierarchical feedforward models of the ventral stream
do “work”
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Using goal-driven deep learning models to understand
sensory cortex

Daniel L K Yamins'? & James ] DiCarlo'-2

e Y
A

Operations in linear-nonlinear layer




Using goal-driven deep learning models to understand
sensory cortex

Daniel L K Yamins'2? & James ] DiCarlo!-
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Summary of today’s overview

Motivations for this course: a golden age for new Al, the key
role of Machine Learning, CBMM

A bit of history: Statistical Learning Theory, Neuroscience
A bit of history: applications

Now:

- why depth works

- why IS neuroscience important

- to the brain from physics via depth?
- the challenge of sampling complexity



Classical learning algorithms:
“high” sample complexity and shallow architectures

How do the learning machines described by classical learning theory --
such as kernel machines -- compare with brains?

d One of the most obvious differences is the ability of people and
animals to learn from very few examples (“poverty of stimulus” problem).

J

Notices of the American Mathematical Society (AMS), Vol.
50, No. 5,

537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale



Today’s science, tomorrow’s engineering:
learn like children learn

The first phase (and successes) of ML:
supervised learning, big data: n — oo

C - - ", \

from programmers...
...to labelers...
...to computers that learn like children...

The next phase of ML: implicitly supervised learning,
learning like children do, small data: n— 1



Summary of today’s overview

Motivations for this course: a golden age for new Al, the key
role of Machine Learning, CBMM

A bit of history: Statistical Learning Theory, Neuroscience
A bit of history: applications

Now:

- why depth works

- why Is neuroscience important

- to the brain from physics via depth?
- the challenge of sampling complexity



