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0.1 Review of the basics

Often machine learning problems require the solution of minimization problems. For instance, the ERM
algorithm requires to solve a problem of the form

min
c∈Rd
‖y −Kc‖2,

for various choices of the loss function. Another typical problem is the regularized one, e.g. Tikhonov
regularization where, for linear kernels one looks for

min
w∈Rd

1

n

n∑
i=1

V (〈w, xi〉, yi) + λR(w).

More generally, we are interested in solving a minimization problem

min
w∈Rd

F (w).

We review the basic concepts that allow to study the problem.

Existence of a minimizer We will consider extended real valued functions F : Rd → R ∪ {+∞}. The
domain of F is

domF = {w ∈ Rd : F (w) < +∞}.
This all F is proper if the domain is nonempty. It is useful to consider extended valued functions since they
allow to include constraints in the regularization.
F is lower semicontinuous if epiF is closed (example). F is coercive if lim‖w‖→+∞ F (w) = +∞.

Theorem 0.1.1. If F is lower semicontinuous and coercive then there exists w∗ such that F (w∗) = minF .

We will always assume that the functions we consider are lower semicontinuous.

0.1.1 Convexity concepts

Convexity F is convex if

(∀w,w′ ∈ domF )(∀λ ∈ [0, 1]) F (λw + (1− λ)w′) ≤ λF (w) + (1− λ)F (w′).

If F is differentiable, we can write an equivalent characterization of convexity based on the gradient:

(∀w,w′ ∈ Rd) F (w′) ≥ F (w) + 〈∇F (w), w′ − w〉

If F is twice differentiable, and ∇2F is the Hessian matrix, convexity is equivalent to ∇2F (w) positive
semidefinite for all w ∈ Rd.

If a function is convex and differentiable, then ∇F (w) = 0 implies that w is a global minimizer.

Strict Convexity F is strictly convex if (∀w,w′ ∈ domF )(∀λ ∈ (0, 1))

F (λw + (1− λ)w′) < λF (w) + (1− λ)F (w′).

If F is differentiable, we can write an equivalent charcterization of strct convexity based on the gradient:

(∀w,w′ ∈ Rd) F (w′) > F (w) + 〈∇F (w), w′ − w〉

If F is twice differentiable, and ∇2F is the Hessian matrix, convexity is implied by ∇2F (w) positive definite
for all w ∈ Rd. The minimizer of a strictly convex function is unique (if it exists)
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Strong Convexity F is µ-strongly convex if the function f −µ‖ · ‖2 is convex, i.e. (∀w,w′ ∈ domF )(∀λ ∈
[0, 1])

F (λw + (1− λ)w′) ≤ λF (w) + (1− λ)F (w′)− µ

2
λ(1− λ)‖w − w′‖2.

If F is differentiable, then strong convexity is equivalent to (∀w,w′ ∈ Rd)

F (w′) ≥ F (w) + 〈∇F (w), w′ − w〉+
µ

2
‖w − w′‖2

If F is twice differentiable, and ∇2F is the Hessian matrix, strong convexity is equivalent to ∇2F (w) ≥ µI
for all w ∈ Rd. If F is strongly convex then it is coercive. Therefore if it is lsc, it admits a unique minimizer.
Moreover

F (w)− F (w∗) ≥
µ

2
‖w − w∗‖2 .

We will often assume Lipschitz continuity of the gradient

‖F (w)− F (w′)‖ ≤ L‖w − w′‖.

This gives a useful quadratic upper bound of F

F (w′) ≤ F (w) + 〈∇F (w), w − w′〉+
L

2
‖w′ − w‖2 (∀w,w′ ∈ domF ) (1)

Moreover, for every w ∈ domF and w∗ is a minimizer,

1

2L
‖∇F (w)‖2 ≤ F (w)− F (w∗) ≤

L

2
‖w − w∗‖2 .

The second inequality follows by substituting in the quadratic upper bound w = w∗ and w′ = w. The first
follows by substituting w′ = w − 1

L∇F (w).

0.2 Convergence of the gradient method with constant step-size

Assume F to be convex, differentiable, with L Lipschitz continuous gradient, and that a minimizer exists.
The first order necessary condition is ∇F (w) = 0. Therefore

w∗ − α∇F (w∗) = w∗

This suggests an algorithm based on the fixed point iteration

wk+1 = wk − α∇F (wk) .

We want to study convergence of this algorithm. Convergence can be intended in two senses, towards the
minimum or towards a minimizer. Start from the first one. Different strategis to choose stepsize. We keep
α fixed and determine a priori conditions guaranteeing convergence. From the quadratic upper bound (1)
we get

F (wk+1) ≤ F (wk)− α‖∇F (wk)‖2 +
Lα2

2
‖∇F (wk)‖2

= F (wk)− α
(

1− L

2
α

)
‖∇F (wk)‖2
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If 0 < α < 2/L the iteration decreases the function value. Choose α = 1/L (which gives the maximum
decrease) and get

F (wk+1) ≤ F (wk)− 1

2L
‖∇F (wk)‖2

≤ F (w∗) + 〈∇F (wk), wk − w∗〉 −
1

2L
‖∇F (wk)‖2

= F (w∗) +
L

2

(
〈∇ 1

L
F (wk), wk − w∗〉 −

1

L2
‖∇F (wk)‖2 − ‖wk − w∗‖2 + ‖wk − w∗‖2

)
= F (w∗) +

L

2
(‖wk − w∗‖2 − ‖wk −

1

L
∇F (wk)− w∗‖2)

= F (w∗) +
L

2
(‖wk − w∗‖2 − ‖wk+1 − w∗‖2)

Summing the above inequality for k = 0, . . . ,K − 1 we get

K−1∑
k=0

F (wk)− F (w∗) ≤
K−1∑
k=0

L

2
(‖wk − w∗‖2 − ‖wk+1 − w∗‖2)

K−1∑
k=0

F (wk)− F (w∗) ≤
L

2
‖w0 − w∗‖2

Noting that F (wk) is decreasing, F (wK)− F (w∗) ≤ F (wk)− F (w∗) for every k, therefore we obtain

F (wK)− F (w∗) ≤
L

2K
‖w0 − w∗‖2 .

This is called sublinear rate of convergence. For strongly convex functions, it is possible to prove that the
operator I − α∇F is a contraction, and therefore we get linear convergence rate:

‖wK − w∗‖2 ≤
(
L− µ
L+ µ

)2K

‖w0 − w∗‖2

which gives, using the bound following (1)

F (wK)− F (w∗) ≤
L

2

(
L− µ
L+ µ

)2K

‖w0 − w∗‖2

which is much better.

It is known that for general convex problems problems, with Lipschitz continuous gradient, the perfor-
mance of any first order method is lower bounded by 1/k2. Nesterov in 1983 devised an algorithm reaching
the lower bound. The algorithm is called accelerated gradient descent and is very similar to the gradient.
It needs to store two iterates, instead of only one. It is of the form

wk+1 = uk −
1

L
∇F (uk)

uk+1 = akwk + bkwk+1,

for some w0 ∈ domF , and u1 = w0 and a suitable (a priori determined) sequence of parameters ak and bk.
More precisely, choose w0 ∈ domF , and u1 = w0. Set t1 = 1. Then define

wk+1 = uk −
1

L
∇F (uk)

tk+1 =
1 +

√
1 + 4t2k
2

uk+1 =

(
1 +

tk − 1

tk+1

)
wk +

1− tk
tk+1

wk+1.
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We obtain

F (wk)− F (w∗) ≤
L‖w0 − w∗‖2

2k2

0.3 Regularized optimization

We often want to minimize
min
w∈Rd

F (w) +R(w),

where either F is smooth (e.g. square loss) and R is convex and nonsmooth, either R is smooth and F is
not (SVM). We would like to write a similar condition to ∇ = 0 to characterize a minimizer. We use the
subdifferential. Let R be a convex, lsc proper function. η ∈ Rd is a subgradient of R at w if

R(w′) ≥ R(w) + 〈η, w′ − w〉.

The subdifferential ∂R(w) is the set of all subgradients. It is easy to see that

R(w∗) = minR ⇐⇒ 0 ∈ ∂R(w∗).

If R is differentiable, the subdifferential is a singleton and coincides with the gradient.
Example 1) Indicator function of a convex set C (constrained regularization). Let w 6∈ C. Then ∂iC = ∅.
If w ∈ C, then η ∈ ∂iC(w) if and only if, for all v ∈ C

iC(v)− iC(w) ≥ 〈η, w − v〉 ⇐⇒ 0 ≥ 〈η, w − v〉.

This is the normal cone to C.
2) Subdifferential of R(w) = ‖w‖1.

n∑
i=1

|vi| −
n∑
i=1

|wi| ≥ 〈η, v − w〉.

If, η is such that for all i = 1, . . . , d
|vi| − |wi| ≥ ηi(vi − wi),

then η ∈ ∂R(w). Vice versa, taking vj = wj for all j 6= i we get that η ∈ ∂R(w) implies that |vi| − |wi| ≥
ηi(vi − wi), and thus ηi ∈ ∂| · |(wi). We therefore proved that

∂R(w) = (∂| · |(w1), . . . , ∂| · |(wd)) .

Proximity operator Let R be lsc, convex, proper. Then

proxR(v) = argminw∈Rd{R(w) +
1

2
‖w − v‖2}

is well-defined and is unique. Imposing the first order necessary conditions, we get

u = proxR(v) ⇐⇒ 0 ∈ ∂R(u) + (u− v) ⇐⇒ v − u ∈ ∂R(u) ⇐⇒ u = (I + ∂R)−1(v)

Examples If R = 0 then prox(v) = v. If R = iC then proxR(v) = PC(v). Proximity operator of the l1
norm. Let v ∈ Rd and u = proxR(v). Then v − u ∈ ∂‖ · ‖1(u). SInce the subdifferential can be computed
componentwise, the same holds for the prox. In particular, u = (I + ∂R)−1(v) By the previous example,
this is equivalent to u = (I + ∂R)−1(v). To compute this quantity first note that

((I + ∂R)(v))i =


vi + 1 if vi > 1

[−1, 1] if vi = 0

vi − 1 if vi < −1
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Inverting the previous relationship we get

(prox‖·‖1(u))i =


ui − 1 if ui > 1

0 if ui ∈ [−1, 1]

ui + 1 if ui < −1

0.4 Basic proximal algorithm (forward-backward splitting)

Assume that F is convex and differentiable with Lipschitz continuous gradient. As for gradient descent,
the idea is to start from a fixed point equation characterizing the minimizer. If we write the first order
conditions, we get

0 ∈ ∇F (w∗) + ∂R(w∗)

⇐⇒ − α∇F (w∗) ∈ α∂R(w∗)

⇐⇒ w∗ − α∇F (w∗)− w∗ ∈ ∂αR(w∗)

⇐⇒ w∗ = proxαR(w∗ − α∇F (w∗)).

We consider the fixed point iteration

wk+1 = proxαkR(wk − αk∇F (wk)) .

Another interpretation:

wk+1 = argmin{αkR(w) +
1

2
‖w − (wk − αk∇F (wk))‖2}

= argmin{R(w) +
1

2αk
‖w‖2 + 〈w − wk,∇F (wk)〉+ F (wk)}

Special cases: R = 0 (gradient method), R = iC (projected gradient method). The proof of convergence for
the sequence of objective values with αk = 1/L is similar to the proof of convergence for the differentiable
case. The rate of convergence is the same as in the differentiable case (this would not be the case if a
subdifferential method was used, compare...)

F (wk)− F (w∗) ≤
L‖w0 − w∗‖2

2k

Convergence proof Set αk = 1/L and define the “gradient mapping” as

G1/L(w) = L(w − 1

L
proxR/L(w − 1

L
∇F (w)))

Then

wk+1 = wk −
1

L
G1/L(wk).

Note that G1/L is not a gradient or a subgradient of F +R but is called gradient mapping. By wiriting the
first order condition for the prox operator, we get:

G1/L(w) ∈ ∇F (w) + ∂R(w − 1

L
G1/L(w))

Recalling the upper bound (1), we obtain

F (w − 1

L
G1/L(w)) ≤ F (w)− 1

L
〈∇F (w), G1/L(w)〉+

1

2L
‖G1/L(w)‖2 (2)
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If inequality (2) holds, then for every v ∈ Rd:

F (w − 1

L
G1/L(w)) ≤ F (v) + 〈G1/L(w), w − v〉+

1

2L
‖G1/L(w)‖2

....

Accelerated versions As for the gradient.
The problem is that the forward-backward algorithm is effective only when prox is easy to compute. Note
indeed that we replaced our original problem with a sequence of new minimization problems. They are
strongly convex (therefore easier), but in general not solvable in closed form.

0.5 Fenchel conjugate and Moreau decomposition

Fenchel conjugate The Fenchel conjugate is a function R∗ : Rd → R ∪ {+∞} defined as

R∗(η) = sup
w∈Rd

{〈η, w〉 −R(w)} .

R∗ is a convex function (even if R is not), since it is the pointwise supremum of convex (linear) functions.
Example

1. Conjugate of an affine function. It is the support function. If R(w) = 〈a,w〉+ b, then R∗(w) = −bι{a}

2. Conjugate of an Indicator function.

3. Conjugate of the norm R(w) = ‖w‖. In this case define ‖η‖∗ = supw:‖w‖≤1〈η, w〉. Then R∗ = IB∗(1).
(for the l1 norm, it is the l∞ norm) Let η /∈ B∗(1). Then ‖η‖∗ = supw:‖w‖≤1〈η, w〉 > 1. Therefore
there exists w̄, ‖w̄‖ ≤ 1 such that 〈η, w̄〉 > 1. Thus,

R∗(η) = sup
w∈Rd

〈η, w〉 − ‖w‖ ≥ 〈η, w̄〉 − ‖w̄‖ > 0.

Now, taking w = tw̄, we derive R∗(η) = +∞. On the other hand, if η ∈ B∗(1), supw:‖w‖≤1〈η, w〉 ≤ 1
and thus

R∗(η) = sup
w∈Rd

〈η, w〉 − ‖w‖ ≤ 0.

Taking w = 0 we obtain R∗(η) = 0.

By definition, R∗(η) +R(w) ≥ 〈η, w〉 for η, w ∈ Rd (Fenchel Young inequality). Moreover,

R(w) +R∗(η) = 〈η, w〉 ⇐⇒ η ∈ ∂R(w) ⇐⇒ w ∈ ∂R∗(η)

Suppose that R∗(η) = 〈η, w〉 − R(w) iff 〈η, w′〉 − R(w′) ≤ 〈η, w〉 − R(w) for every w′ iff η ∈ ∂R(w). From
R(w) +R∗(η) = 〈w, η〉 we get

R∗(η′) = sup
u
〈η′, u〉 −R(u)

≥ 〈η′, w〉 −R(w)

= 〈η′ − η, w〉+ 〈η, w〉 −R(w)

= 〈η′ − η, w〉 −R∗(η).

If R is lsc and convex, then R∗∗ = R (which gives the other equivalence).
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Moreau decomposition
w = proxR(w) + proxR∗(w)

It follows from the properties stated above of the subdifferential and of the conjugate:

u = proxR(w) ⇐⇒ w − u ∈ ∂R(u)

⇐⇒ u ∈ ∂R∗(w − u)

⇐⇒ w − (w − u) ∈ ∂R∗(w − u)

⇐⇒ w − u = proxR∗(w).

Note that this is a generalization of the classical decomposition on orthogonal components. So if V is a
linear subspace and V ⊥ is the orthogonal subspace, we know w = PV (w) + PV ⊥(w). This is a special case
of the Moreau decomposition obtained by choosing R = iV (and noting that R∗ = iV ⊥).

Properties of the proximity operators – examples Separable sum: If R(w) = R1(w1)+R2(w2), then
proxR(w) = (proxR1

(w1),proxR2
(w2)). Scaling:

proxR+µ
2 ‖·‖2

(v) = prox 1
1+µR

(
v

1 + µ

)

“Generalized” Moreau decomposition: for every λ > 0:

w = proxλR(w) + λproxR∗/λ(w/λ)

Sometimes, Moreau decomposition is useful to compute proximity operators. Let R(w) = λ‖w‖. We
have seen that R∗ = iB∗(λ). Therefore, from the Moreau decomposition, we get

proxR(w) = w − PB∗(λ)(w).

In particular, if R = ‖ · ‖1, noting that ‖ · ‖∗ = ‖ · ‖∞, we obtain again the formula for the soft-thresholding
seen before.

Elastic-net.

Let G = {G1, . . . , Gt} be a partition of the indices {1, . . . , d}. The following norm is called group lasso
penalty:

R(w) =

t∑
i=1

‖w‖Gi ,

where ‖w‖2Gi =
∑
j∈Gi w

2
j . The dual norm is

max
j=1,...,t

‖w‖Gj ,

and therefore
proxR(w) = w − PB∗(λ)(w),

where B∗(λ) = {w ∈ Rd : ‖w‖Gj ≤ λ, ∀j = 1, . . . , t}. The projection on this set can be expressed compo-
nentwise as

(PB∗(λ)(w))Gj =


wGj if ‖w‖Gj ≤ λ

λ
wGj
‖w‖Gj

, otherwise
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