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These notes present a brief summary of some of the basic definitions from functional analysis that
we will need in this class. Although we will not actually use all the material presented here, these
notes can serve as a useful reference for the definitions and relationships between properties that we
encounter in the class later.

These notes are organized as follows. We first discuss finite dimensional vector spaces and additional
structures that we can impose on them. We then introduce Hilbert spaces, which play a central
role in this class, and talk about the subtleties that we have to deal with when working in infinite
dimension. Finally, we talk about matrices and linear operators, in the context of linear mappings
between vector spaces. We will see how matrices represent linear functions between finite dimensional
vector spaces, and develop a parallel theory on linear operators between general Hilbert spaces.

Throughout these notes, we assume that we are working with the base field R.

1 Structures on Vector Spaces

A vector space V is a set with a linear structure. This means we can add elements of the vector
space or multiply elements by scalars (real numbers) to obtain another element. A familiar example
of a vector space is Rn. Given x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn, we can form a new vector
x+ y = (x1 + y1, . . . , xn + yn) ∈ Rn. Similarly, given r ∈ R, we can form rx = (rx1, . . . , rxn) ∈ Rn.

Every vector space has a basis. A subset B = {v1, . . . , vn} of V is called a basis if every vec-
tor v ∈ V can be expressed uniquely as a linear combination v = c1v1 + · · · + cmvm for some
constants c1, . . . , cm ∈ R. The cardinality (number of elements) of V is called the dimension of
V . This notion of dimension is well defined because while there is no canonical way to choose
a basis, all bases of V have the same cardinality. For example, the standard basis on Rn is
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1). This shows that Rn is an n-dimensional
vector space, in accordance with the notation. In this section we will be working with finite dimen-
sional vector spaces only.

We note that any two finite dimensional vector spaces over R are isomorphic, since a bijection
between the bases can be extended linearly to be an isomorphism between the two vector spaces.
Hence, up to isomorphism, for every n ∈ N there is only one n-dimensional vector space, which is
Rn. However, vector spaces can also have extra structures that distinguish them from each other,
as we shall explore now.
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A distance (metric) on V is a function d : V × V → R satisfying:

1. (positivity) d(v, w) ≥ 0 for all v, w ∈ V , and d(v, w) = 0 if and only if v = w.

2. (symmetry) d(v, w) = d(w, v) for all v, w ∈ V .

3. (triangle inequality) d(v, w) ≤ d(v, x) + d(x,w) for all v, w, x ∈ V .

The standard distance function on Rn is given by d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2. Note
that the notion of metric does not require a linear structure, or any other structure, on V ; a metric
can be defined on any set.

A similar concept that requires a linear structure on V is norm, which measures the “length” of
vectors in V . Formally, a norm is a function ‖·‖ : V → R that satisfies the following three properties:

1. (positivity) ‖v‖ ≥ 0 for all v ∈ V , and ‖v‖ = 0 if and only if v = 0.

2. (homogeneity) ‖rv‖ = |r|‖v‖ for all r ∈ R and v ∈ V .

3. (subadditivity) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

For example, the standard norm on Rn is ‖x‖2 =
√
x2

1 + · · ·+ x2
n, which is also called the `2-norm.

Also of interest is the `1-norm ‖x‖1 = |x1| + · · · + |xn|, which we will study later in this class in
relation to sparsity-based algorithms. We can also generalize these examples to any p ≥ 1 to obtain
the `p-norm, but we will not do that here.

Given a normed vector space (V, ‖ · ‖), we can define the distance (metric) function on V to be
d(v, w) = ‖v − w‖. For example, the `2-norm on Rn gives the standard distance function

d(x, y) = ‖x− y‖2 =
√

(x1 − y1)2 + · · ·+ (xn − yn)2,

while the `1-norm on Rn gives the Manhattan/taxicab distance,

d(x, y) = ‖x− y‖1 = |x1 − y1|+ · · ·+ |xn − yn|.

As a side remark, we note that all norms on a finite dimensional vector space V are equivalent.
This means that for any two norms µ and ν on V , there exist positive constants C1 and C2 such
that for all v ∈ V , C1µ(v) ≤ ν(v) ≤ C2µ(v). In particular, continuity or convergence with respect to
one norm implies continuity or convergence with respect to any other norms in a finite dimensional
vector space. For example, on Rn we have the inequality ‖x‖1/

√
n ≤ ‖x‖2 ≤ ‖x‖1.

Another structure that we can introduce to a vector space is the inner product. An inner product
on V is a function 〈·, ·〉 : V × V → R that satisfies the following properties:

1. (symmetry) 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .

2. (linearity) 〈r1v1 + r2v2, w〉 = r1〈v1, w〉+ r2〈v2, w〉 for all r1, r2 ∈ R and v1, v2, w ∈ V .

3. (positive-definiteness) 〈v, v〉 ≥ 0 for all v ∈ V , and 〈v, v〉 = 0 if and only if v = 0.

For example, the standard inner product on Rn is 〈x, y〉 = x1y1 + · · · + xnyn, which is also known
as the dot product, written x · y.

Given an inner product space (V, 〈·, ·〉), we can define the norm of v ∈ V to be ‖v‖ =
√
〈v, v〉. It is

easy to check that this definition satisfies the axioms for a norm listed above. On the other hand,
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not every norm arises from an inner product. The necessary and sufficient condition that has to be
satisfied for a norm to be induced by an inner product is the paralellogram law:

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2.

If the parallelogram law is satisfied, then the inner product can be defined by polarization identity:

〈v, w〉 =
1
4
(
‖v + w‖2 − ‖v − w‖2

)
.

For example, you can check that the `2-norm on Rn is induced by the standard inner product, while
the `1-norm is not induced by an inner product since it does not satisfy the parallelogram law.

A very important result involving inner product is the following Cauchy-Schwarz inequality:

〈v, w〉 ≤ ‖v‖‖w‖ for all v, w ∈ V.

Inner product also allows us to talk about orthogonality. Two vectors v and w in V are said to
be orthogonal if 〈v, w〉 = 0. In particular, an orthonormal basis is a basis v1, . . . , vn that is
orthogonal (〈vi, vj〉 = 0 for i 6= j) and normalized (〈vi, vi〉 = 1). Given an orthonormal basis
v1, . . . , vn, the decomposition of v ∈ V in terms of this basis has the special form

v =
n∑

i=1

〈v, vn〉vn.

For example, the standard basis vectors e1, . . . , en form an orthonormal basis of Rn. In general, a
basis v1, . . . , vn can be orthonormalized using the Gram-Schmidt process.

Given a subspace W of an inner product space V , we can define the orthogonal complement of
W to be the set of all vectors in V that are orthogonal to W ,

W⊥ = {v ∈ V | 〈v, w〉 = 0 for all w ∈W}.

If V is finite dimensional, then we have the orthogonal decomposition V = W⊕W⊥. This means
every vector v ∈ V can be decomposed uniquely into v = w+w′, where w ∈W and w′ ∈W⊥. The
vector w is called the projection of v on W , and represents the unique vector in W that is closest
to v.

2 Hilbert Space

A central object of study in this class, also in the development of learning theory in general, is
a Hilbert space – a complete inner product space – and that is the theme of this section. The
difficulty arises from the possibility of working in infinite dimension, for example when we are
dealing with function spaces. Most of the discussion in Section 1 carry over easily to the case of
infinite dimensional vector spaces, but we have to be a bit careful about the notion of a basis, since
now we have to deal with infinite sums. In particular, we will only be concerned with Hilbert spaces
H which have countable orthonormal basis (vn)∞n=1, so that we can write every element v ∈ H as

v =
∞∑

n=1

〈v, vn〉vn.

We will now talk about a few concepts that will allow us to make sense of these properties.
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We first discuss Cauchy sequence and completeness. Recall that a sequence (vn)n∈N in a normed
space V converges to v ∈ V if ‖vn−v‖ → 0 as n→∞, or equivalently, if for every ε > 0 there exists
N ∈ N such that ‖vn − v‖ < ε whenever n ≥ N . Intuitively, this means that vn becomes arbitrarily
close to v as we go further down the sequence. A similar condition on a sequence is Cauchy. A
sequence (vn)n∈N in V is a Cauchy sequence if the distance between any pair of elements in the
sequence becomes arbitrarily small as we go further in the sequence. More formally, (vn)n∈N is a
Cauchy sequence if for every ε > 0 there exists N ∈ N such that ‖vm− vn‖ < ε whenever m,n ≥ N .
Clearly every convergent sequence is Cauchy, by the triangle inequality, but the converse needs not
be true.

A normed vector space is complete if every Cauchy sequence converges. Intuitively, this means that
there are no “holes” in the space. For example, Q is not complete since it is missing the irrationals.
More concretely, the sequence 1.4142, 1.41421, 1.414213, . . . converges to

√
2 in R, but

√
2 /∈ Q. On

the other hand, R is complete by definition (in fact, R is the completion of Q), and it can be shown
that Rn is complete for every n ∈ N. Moreover, every finite dimensional normed vector space (over
R) is complete. This is because, as we saw in Section 1, every n-dimensional real vector space V is
isomorphic to Rn, and any two norms in Rn are equivalent. Therefore, V is complete if and only if
Rn is complete under the standard norm, which it is.

We are now ready to define Hilbert spaces.

Definition. A Hilbert space is a complete inner product space.

The remark at the end of the previous paragraph shows that Rn and any finite dimensional inner
product space are examples of Hilbert spaces. The archetypical example of an infinite dimensional
Hilbert space is the space of square-summable sequences,

`2 = {(an)∞n=1 | an ∈ R,
∞∑

n=1

a2
n <∞},

where addition and scalar multiplication are defined componentwise, and inner product is defined
by 〈a, b〉 =

∑∞
n=1 anbn. We can also consider the continuous analogue of `2, namely, the space of

square-integrable functions

L2([0, 1]) = {f : [0, 1]→ R |
∫ 1

0

f(x)2 dx <∞},

where the integral is Lebegue integration with respect to the Lebesgue measure dx on [0, 1]. Addition
and scalar multiplication on this space are defined pointwise, and inner product is given by 〈f, g〉L2 =∫ 1

0
f(x)g(x) dx. With this structure, L2([0, 1]) is also an infinite dimensional Hilbert space.

A Hilbert space always has an orthonormal basis, but it might be uncountable. Typically we are
only concerned with Hilbert spaces with countable orthonormal basis, and a natural condition that
can be imposed to ensure this property is separability. Intuitively, a space is separable if it can be
approximated by a countable subset of it, in a sense to be made precise shortly. For example, R can
be approximated by Q, which is countable, so R is separable.

First, recall that given a topological space X, a subset Y is dense in X if Y = X. Informally, Y
is dense in X every point x ∈ X is a limit of a sequence of points (yn)n∈N in Y . For example, Q is
dense in R since every real number can be approximated by its truncated decimal representations,
and Qn is dense in Rn for every n ∈ N. As a further example, Weierstrass approximation theorem
states that the space of polynomials is dense in the space of continuous functions on a compact
domain, under the supremum norm.
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A topological space X is separable if it has a countable dense subset. In some sense, separability is
a limitation on the size of X, since this condition means that X can be approximated by a countable
subset of it, even if X itself is uncountable. As we mentioned in the example above, Q is a countable
dense subset of R, so R is separable. More generally, Qn is a countable dense subset of Rn, so Rn is
separable for any n ∈ N.

Separability is an essential condition because we have the following result.

Theorem. A Hilbert space has a countable orthonormal basis if and only if it is separable.

In this class, whenever we encounter Hilbert spaces we will always assume that they are separable,
so we can work with countable orthonormal basis. Given a countable orthonormal basis (vn)n∈N of
a Hilbert space H, we can write the decomposition

v =
∞∑

n=1

〈v, vn〉vn for all v ∈ H.

For example, the spaces `2 and L2([0, 1]) from the examples above are separable Hilbert spaces. An
orthonormal basis for `2 is given by (en)n∈N, where en is an `2 sequence that is 1 at the n-th position
and 0 everywhere else. An orthonormal basis for L2([0, 1]) is given by the functions

{1, 2 sin 2πnx, 2 cos 2πnx | n ∈ N},

which is precisely the Fourier basis. In fact, just as every finite dimensional Hilbert space is isomor-
phic to Rn, it is also true that every infinite dimensional separable Hilbert space is isomorphic to
`2, simply by linearly extending the bijection between the orthonormal basis.

Since a Hilbert space is also an inner product space, we can still talk about the orthogonal comple-
ment, as in Section 1. Given a Hilbert space H and a subspace V , the orthogonal complement V ⊥
is always a closed subspace of H (note that every finite dimensional subspace of a normed space is
always closed, but if the subspace is infinite dimensional it can be not closed). In addition, if V is
closed in H, then we again have the orthogonal decomposition H = V ⊕ V ⊥.

Remarks

We now add a few remarks about the development of the concepts that we introduced in the previous
section.

Remark 1. We noted that any finite dimensional normed vector space is complete. The situation is
more interesting in infinite dimension. Consider the space C([0, 1]) of continuous functions f : [0, 1]→
R with elementwise addition and scalar multiplication. This space is complete under the supremum
norm ‖f‖∞ = sup0≤x≤1 |f(x)| (sketch of proof: given a Cauchy sequence (fn)n∈N, show that for
each x the sequence (fn(x))n∈N is Cauchy in R, and hence converges; form a function f whose values
are the pointwise limit in R, and show that the original sequence converges to f ∈ C([0, 1])). On the
other hand, C([0, 1]) is not complete under the L1-norm, ‖f‖1 =

∫ 1

0
|f(x)|dx. As a counter example,

take fn to be the function that takes the value 0 for x = 0, value 1 for x ∈ [1/n, 1], and linear in
between. It is easy to check that (fn)n∈N is a Cauchy sequence, but it converges to the function

f(x) =

{
0, if x = 0,
1, if 0 < x ≤ 1,

which is not continuous.
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Remark 2. The construction of L2([0, 1]) above is not technically correct. This is because two
functions f and g can have the same Lebesgue integral as long as they differ on a set of measure
zero (for instance, on countably many points). Therefore, the norm given above is not well-defined
since we can have nonzero functions f with ‖f‖ = 0. To take care of this problem, we declare two
functions f and g to be equivalent, f ∼ g, if

∫ 1

0
(f(x)− g(x))2 dx = 0, and define L2([0, 1]) to be the

quotient space

L2([0, 1]) = {f : [0, 1]→ R |
∫ 1

0

f(x)2 dx <∞}/ ∼ .

This means elements of L2([0, 1]) are not functions, but rather equivalence classes of functions. In
particular, we cannot evaluate “functions” in L2([0, 1]) on points. We will see in the next lecture a
nice function space in which we can evaluate functions at points.

Remark 3. As a side note, a Banach space is a complete normed space. For example, C([0, 1])
with the supremum norm is a Banach space. As another example of a Banach space, consider the
space of absolutely-summable sequences,

`1 = {(an)∞n=1 | an ∈ R,
∞∑

n=1

|an| <∞},

where addition and scalar multiplication are again defined componentwise, and norm is given by
‖a‖1 =

∑∞
n=1 |an|.

3 Matrices and Operators

In addition to talking about vector spaces, we can also talk about operators on those spaces. A
linear operator is a function L : V → W between two vector spaces that preserves the linear
structure. In finite dimension, every linear operator can be represented by a matrix by choosing a
basis in both the domain and the range, i.e. by working in coordinates. For this reason we focus the
first part of our discussion on matrices.

If V is n-dimensional and W is m-dimensional, then a linear map L : V → W is represented by an
m × n matrix A whose columns are the values of L applied to the basis of V . The rank of A is
the dimension of the image of A, and the nullity of A is the dimension of the kernel of A. The
rank-nullity theorem states that rank(A) + nullity(A) = m, the dimension of the domain of A.
Also note that the transpose of A is an n×m matrix A> satisfying

〈Av,w〉Rm = (Av)>w = v>A>w = 〈v,A>w〉Rn

for all v ∈ Rn and w ∈ Rm.

Let A be an n× n matrix with real entries. Recall that an eigenvalue λ ∈ R of A is a solution to
the equation Av = λv for some nonzero vector v ∈ Rn, and v is the eigenvector of A corresponding
to λ. If A is symmetric, i.e. A> = A, then the eigenvalues of A are real. Moreover, in this case the
spectral theorem tells us that there is an orthonormal basis of Rn consisting of the eigenvectors of
A. Let v1, . . . , vn be this orthonormal basis of eigenvectors, and let λ1, . . . , λn be the corresponding
eigenvalues. Then we can write

A =
n∑

i=1

λiviv
>
i ,

which is called the eigendecomposition of A. We can also write this as

A = V ΛV >,
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where V is the n × n matrix with columns vi, and Λ is the n × n diagonal matrix with entries λi.
The orthonormality of v1, . . . , vn makes V an orthogonal matrix, i.e. V −1 = V >.

A symmetric n× n matrix A is positive definite if v>Av > 0 for all nonzero vectors v ∈ Rn. A is
positive semidefinite if the inequality is not strict (i.e. ≥ 0). A positive definite (resp. positive
semidefinite) matrix A has positive (resp. nonnegative) eigenvalues.

Another method for decomposing a matrix is the singular value decomposition (SVD). Given
an m× n real matrix A, the SVD of A is the factorization

A = UΣV >,

where U is an m × m orthogonal matrix (U>U = I), Σ is an m × n diagonal matrix, and V is
an n × n orthogonal matrix (V >V = I). The columns u1, . . . , um of U form an orthonormal basis
of Rm, and the columns v1, . . . , vn of V form an orthonormal basis of Rn. The diagonal elements
σ1, . . . , σmin{m,n} in Σ are nonnegative and called the singular values of A. This factorization
corresponds to the decomposition

A =
min{m,n}∑

i=1

σiuiv
>
i .

This decomposition shows the relations between σi, ui, and vi more clearly: for 1 ≤ i ≤ min{m,n},

Avi = σiui AA>ui = σ2
i ui

A>ui = σivi A>Avi = σ2
i vi

This means the ui’s are eigenvectors of AA> with corresponding eigenvalues σ2
i , and the vi’s are

eigenvectors of A>A, also with corresponding eigenvalues σ2
i .

Given an m× n matrix A, we can define the spectral norm of A to be largest singular value of A,

‖A‖spec = σmax(A) =
√
λmax(AA>) =

√
λmax(A>A).

Another common norm on A is the Frobenius norm,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij =

√
trace(AA>) =

√
trace(A>A) =

√√√√min{m,n}∑
i=1

σ2
i .

However, since the space of all matrices can be identified with Rm×n, the discussion in Section 1
still holds and all norms on A are equivalent.

In general, let H1 and H2 be (possibly infinite dimensional) Hilbert spaces. A linear operator
L : H1 → H2 is continuous if and only if it is bounded: there exists a constant C > 0 such that

‖Lv‖H2 ≤ C‖v‖H1 for all v ∈ H1.

In other words, a continuous linear operator maps bounded sets into bounded sets1. The smallest
such C is called the operator norm of L. If H1 and H2 are finite dimensional, then every linear
operator from H1 to H2 is continuous, but in general this needs not be the case.

A linear functional is a linear operator L : H → R. An important result about linear functionals
is Riesz’ representation theorem: for every bounded linear functional L : H → R there exists

1Note that “bounded” here does not mean ‖Lv‖H2 ≤ C for all v ∈ H1. In fact, it is easy to convince yourself that
this condition cannot be true for a linear operator L.
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a unique element v ∈ H such that Lw = 〈v, w〉H for all w ∈ H. That is, every continuous linear
functional can be “represented” by an element v ∈ H.

The generalization of the concept of transpose is adjoint. Given a bounded linear operator L : H1 →
H2, the adjoint of L is the unique bounded linear operator L∗ : H2 → H1 satisfying

〈Lv,w〉H2 = 〈v, L∗w〉H1 for all v ∈ H1, w ∈ H2.

An operator L : H → H is self-adjoint if L∗ = L. Self-adjoint operators have real eigenvalues.

A self-adjoint linear operator L is positive definite if 〈Lv, v〉H > 0 for all v ∈ H, v 6= 0. Similarly,
L is positive (or positive semidefinite) if 〈Lv, v〉H ≥ 0 for all v ∈ H, v 6= 0. A positive definite
(resp. positive semidefinite) operator has positive (resp. nonnegative) eigenvalues.

A bounded linear operator L : H1 → H2 is a finite rank operator if the range of L in H2 is finite
dimensional. Finally, perhaps the most interesting class of operators is compact operators, which are
direct generalization of matrices to the theory of operators. A bounded linear operator L : H1 → H2

is compact if the image of unit ball in H1 is pre-compact in H2, i.e. has compact closure. It can
be shown that the space of compact operators is the closure of the space of finite rank operators.

Compact operators are nice because we also have the spectral theorem: Let L : H → H be
a compact self-adjoint operator on a separable Hilbert space H. Then there exists a countable
orthonormal basis of H consisting of the eigenfunctions vi of L,

Lvi = λivi,

and the only possible limit point of λi as i → ∞ is 0. As in the case of symmetric matrix, we can
write the eigendecomposition of L:

L =
∞∑

i=1

λi〈vi, ·〉Hvi.

When L : H1 → H2 is a compact but not self-adjoint operator, we can still perform the singular
value decomposition of L:

L =
∞∑

i=1

σi〈vi, ·〉H1ui,

where (ui)i∈N is an orthonormal basis of range(L) ⊆ H2, (vi)i∈N is an orthonormal basis of range(L∗) ⊆
H1, and (σi)i∈N consists of the nonzero singular values of L. Another way of looking at this decom-
position is via the following singular system:

Lvi = σiui LL∗ui = σ2
i ui

L∗ui = σivi L∗Lvi = σ2
i vi

From the relations above, it is clear that ui is an eigenfunction of LL∗ with eigenvalue σ2
i , and

similarly vi is an eigenfunction of L∗L with eigenvalue σ2
i .
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