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Connection with the topic of 
learning theory

2
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How then do the learning machines described in the theory compare with brains? 

q One of the most obvious differences is the ability of people and animals to 
learn from very few examples. The algorithms we have described can learn an object recognition 
task from a few thousand labeled images but a child, or even a monkey, can learn the same task from just a few 
examples. Thus an important area for future theoretical and experimental work is learning from partially labeled 
examples 

q A comparison with real brains offers another,  related, challenge to learning theory. The “learning algorithms” we 
have described in this paper correspond to one-layer architectures. Are hierarchical architectures 
with more layers justifiable in terms of learning theory? It seems that the learning theory of 
the type we have outlined does not offer any general argument in favor of hierarchical learning machines for 
regression or classification. 

q Why hierarchies? There may be reasons of efficiency – computational speed and use of computational 
resources. For instance, the lowest levels of the hierarchy may represent a dictionary of features that can be 
shared across multiple classification tasks.

q  There may also be the more fundamental issue of sample complexity. Learning theory shows that the 
difficulty of a learning task depends on the size of the required hypothesis space. This complexity determines in 
turn how many training examples are needed to achieve a given level of generalization error. Thus our ability of 
learning from just a few examples, and its limitations, may be related to the hierarchical architecture of cortex. 

Notices of the American Mathematical Society (AMS), Vol. 50, No. 5,
537-544, 2003.

The Mathematics of Learning: Dealing with Data
Tomaso Poggio and Steve Smale

Thursday, December 5, 13



Classical learning theory and Kernel Machines 
(Regularization in RKHS)

implies

Remark:

Kernel machines correspond to
shallow networks

X1

f

Xl

Thursday, December 5, 13



M-theory: 
unsupervised learning of hierarchical invariant representations 

The Center for
Brains, Minds and Machines
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Plan

1.Motivation: models of cortex (and deep convolutional 
networks)

2.Core theory 
- the basic invariance module
- the hierarchy

3.Computational performance 
4.Biological predictions
5. Theorems and remarks

– .
– invariance and sample complexity
– connections with scattering transform
– invariances and beyond perception
– ...

n→ 1
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*Modified from (Gross, 1998)

[software available online
with CNS (for GPUs)]

Riesenhuber & Poggio 1999, 2000;  Serre Kouh Cadieu 
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

  Motivation: feedforward models of recognition in Visual Cortex
(Hubel and Wiesel + Fukushima and many others)
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[software available online] Riesenhuber & Poggio 1999, 2000;  Serre Kouh Cadieu 
Knoblich Kreiman & Poggio 2005; Serre Oliva Poggio 2007

• It is in the family of “Hubel-Wiesel” 
models (Hubel & Wiesel, 1959: qual. 
Fukushima, 1980: quant; Oram & 
Perrett, 1993: qual; Wallis & Rolls, 
1997; Riesenhuber & Poggio, 1999; 
Thorpe, 2002; Ullman et al., 2002; Mel, 
1997; Wersing and Koerner, 2003; 
LeCun et al 1998: not-bio; Amit & 
Mascaro, 2003: not-bio; Hinton, LeCun, 
Bengio not-bio; Deco & Rolls 2006…)

• As a biological model of 
object recognition in the 
ventral stream – from V1 to 
PFC -- it is perhaps the most 
quantitatively faithful to 
known neuroscience data

	  	  Recogni)on	  in	  Visual	  Cortex:	  ‘’classical	  model”,	  
selec)ve	  and	  invariant
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V1:

Simple and complex cells tuning (Schiller et al 1976; Hubel & Wiesel 1965; Devalois et al 1982)

MAX-like operation in subset of complex cells (Lampl et al 2004)
V2:

Subunits and their tuning (Anzai, Peng, Van Essen 2007)
V4:

Tuning for two-bar stimuli (Reynolds Chelazzi & Desimone 1999)

MAX-like operation (Gawne et al 2002)
Two-spot interaction (Freiwald et al 2005)

Tuning for boundary conformation (Pasupathy & Connor 2001, Cadieu, Kouh, Connor et al., 2007)
Tuning for Cartesian and non-Cartesian gratings (Gallant et al 1996)

IT:

Tuning and invariance properties (Logothetis et al 1995, paperclip objects)
Differential role of IT and PFC in categorization (Freedman et al 2001, 2002, 2003)

Read out results (Hung Kreiman Poggio & DiCarlo 2005)
Pseudo-average effect in IT (Zoccolan Cox & DiCarlo 2005; Zoccolan Kouh Poggio & DiCarlo 2007)

Human:

Rapid categorization (Serre Oliva Poggio 2007)
Face processing (fMRI + psychophysics) (Riesenhuber et al 2004; Jiang et al 2006)

Hierarchical	  Feedforward	  Models:
is	  consistent	  with	  or	  predict	  	  neural	  data

	  	  Model	  “works”:
it	  accounts	  for	  	  physiology	  
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Feedforward Models:
“predict” rapid categorization 
(82% model vs. 80% humans) 

Image-by-image correlation:
around 73% 

for model vs.  humans) 

	  	  Model	  “works”:
it	  accounts	  for	  psychophysics
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Models of the ventral stream in cortex
perform well compared to 

engineered computer vision systems (in 2006)
on several databases 

Bileschi, Wolf, Serre, Poggio, 2007

	  	  Model	  “works”:
it	  performs	  well	  at	  computa)onal	  level
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Models of cortex lead to better systems for action 
recognition in videos: automatic phenotyping of mice

human 
agreement 72%

proposed 
system 77%

commercial 
system 61%

chance 12%

Performance

Jhuang	  ,	  Garrote,	  Yu,	  Khilnani,	  Poggio,	  Mutch	  Steele,	  Serre,	  	  Nature	  Communicatons,	  2010

	  	  Model	  “works”:
it	  performs	  well	  at	  computa)onal	  level
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Hierarchical, Hubel and Wiesel (HMAX-type) 
models 

work  well, as model of cortex and as 
computer vision systems

but...why? and how can we improve them?

Similar convolutional networks 
 called deep learning networks 

(LeCun, Hinton,...) 
are 

unreasonably successful 
in vision and speech (ImageNet+Timit)...

why?

This is a situation that screams for a theory!

  Motivation: 
theory is needed!
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Collaborators (MIT-IIT, LCSL) in recent work

F. Anselmi,  J. Mutch ,  J. Leibo,   L. Rosasco,  A. Tacchetti, Q. Liao
+ +

 Evangelopoulos, Zhang, Voinea

Also:	  	  L.	  Isik,	  S.	  Ullman,	  S.	  Smale,	  	  C.	  Tan,	  M.	  Riesenhuber,	  T.	  Serre,	  G.	  Kreiman,	  S.	  Chikkerur,	  
A.	  Wibisono,	  J.	  Bouvrie,	  M.	  Kouh,	  	  	  J.	  DiCarlo,	  	  C.	  Cadieu,	  S.	  Bileschi,	  	  L.	  Wolf,	  

D.	  Ferster,	  I.	  Lampl,	  N.	  LogotheOs,	  H.	  Buelthoff
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Plan

1.Motivation: models of cortex (and deep convolutional 
networks)

2.Core theory 
- the basic invariance module
- the hierarchy

3.Computational performance 
4.Biological predictions
5. Theorems and remarks

– .
– invariance and sample complexity
– connections with scattering transform
– invariances and beyond perception
– ...

n→ 1
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Theory: underlying hypothesis

The main computational goal of the feedforward 
vent ra l s t ream h ierarchy is to compute a 
representation for each incoming image which is 
invariant to transformations previously experienced in 
the visual environment. 

Remarks:

• A theorem  shows that invariant representations may reduce by orders of 
magnitude the sample complexity of a classifier at the top of the hierarchy

• Empirical evidence also supports the claim
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Theory: underlying hypothesis

The main computational goal of the feedforward 
vent ra l s t ream h ierarchy is to compute a 
representation for each incoming image which is 
invariant to transformations previously experienced in 
the visual environment. 

Remarks:

• A theorem  shows that invariant representations may reduce by orders of 
magnitude the sample complexity of a classifier at the top of the hierarchy

• Empirical evidence also supports the claim

Features do not matter!
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  Use of invariant representation ---> signature vectors for memory access
at several levels of the hierarchy

∑ = signature⋅ vector ⋅

Associative
 memory 

or 
supervised
classifier

...
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...

Neuroscience constraints on image 
representations

Remarks:

• Images can be represented by a set of functionals on the 
image, e.g. a set of measurements

• Neuroscience suggests that natural  functionals for a 
neuron to compute is a high-dimensional dot product 
between  an “image patch” and another image patch 
(called template) which is stored in terms of synaptic 
weights (synapses per neuron                    )

• Projections via dot products are natural for neurons: here 
simple cells

 ∼ 102 −105

Neuroscience definition of
dot product!
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...

Neuroscience constraints on image 
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Remarks:

• Images can be represented by a set of functionals on the 
image, e.g. a set of measurements

• Neuroscience suggests that natural  functionals for a 
neuron to compute is a high-dimensional dot product 
between  an “image patch” and another image patch 
(called template) which is stored in terms of synaptic 
weights (synapses per neuron                    )

• Projections via dot products are natural for neurons: here 
simple cells

 ∼ 102 −105

Neuroscience definition of
dot product!

Thursday, December 5, 13



Signatures:	  the	  Johnson-‐Lindenstrauss	  theorem	  (features	  do	  
not	  ma=er	  much!)

Thursday, December 5, 13



Computing an invariant signature with the HW module 
(dot products and histograms of an image in a window)

poggio, anselmi, rosasco, tacchetti, leibo, liao

A template (e.g. a car,   ) 
undergoes all in plane rotations

An histogram of the values of the 
dot products of       with the image 

(e.g. a face) is computed.
Histogram gives a unique and 

invariant image signature 
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This is it
• The basic HW module works for all transformations (no 

need to know anything about it, just collect unlabeled 
videos)

• Recipe: 
- memorize a set of images/objects called templates
- for each template memorize observed transformations
- to generate an representation/signature invariant to those transformation 

for each template
- compute dot products of its transformations with image
- compute histogram of the resulting values

• The same rule works on many types of transformations:
- affine in 2D, image blur, image undersampling,...
- 3D pose for faces, pose for bodies, perspective deformations, color 

constancy, aging, face expressions,...
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25Q.	  Liao,	  J.	  Leibo
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I want to get into more detail of two points here:

1. invariant representations are good because they reduce sample complexity

2. theorems on the magic of computing a good representation
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MoOvaOon
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	  	  	  	  	  	   Learning how biology does learn - from very few 
labeled examples

Number of training examples per Number of training examples per 

Idea: unsupervised learning of invariant representations reduces number of labeled 
examples
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Theorem	   (transla)on	   case)	   Consider	   a	   space	   of	   images	   of	  
dimensions	   	   	   	  	   	   	  	   	   	   	  	   	   	  pixels	  which	  may	  appear	  in	  any	  posiCon	  
within	   a	   window	   of	   size	   	   	   	   	   pixels.	   The	   usual	   image	  
representaCon	   yields	   a	   sample	   complexity	   (	   of	   a	   linear	  
classifier)	   	   of	   order	   	   	   	   	   	   	   	   	   	   	   ;the	   	   oracle	   representaCon	  	  
(invariant)	  yields	  (because	  of	  much	  smaller	  covering	  numbers)	  
a	  	  -‐-‐	  much	  be=er	  -‐-‐	  sample	  complexity	  of	  order

30

moracle = O(d
2 ) =

mimage

r2

d × d
rd × rd

m = O(r2d 2 )

Invariance can significantly reduce sample complexity

poggio, rosasco

Theory: underlying hypothesis
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The first phase (and successes) of ML: 
                        supervised learning:   

The next phase of ML: unsupervised learning of 
         invariant representations for learning: 

A	  second	  phase	  in	  machine	  learning:
	  a	  paradigm	  shiS?

n→∞

n→ 1
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Learning Data Representations:
beyond DeepLearning: 

the Magic Theory

Tomaso Poggio

Class 25
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I want to get into more detail of two points here:

1. invariant representations are good because they reduce sample complexity

2. theorems on the magic of computing a good representation
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Overview of a “deep” theory

• Formal proofs --> exact invariance for generic images 
under group transformations using the basic HW module 
with generic templates (it is an invariant Johnson-
Lindenstrauss-like embedding)
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Transformation example: affine group

The action of a group transformation      on an image    is defined 
as:

In the case of affine group:      

I
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Transformation example: affine group

The action of a group transformation      on an image    is defined 
as:

g

 gI(
!x) = I(g−1!x)

 gI(
!x) = I(A−1!x −

!
b),       A ∈GL(2),

!
b ∈R2

In the case of affine group:      

I
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Theorems for the compact group

The image orbit and its associated
 probability distribution
 is invariant and unique

This “movie” is stored during 
development

For a SINGLE new image 
invariant and unique signature
consisting of 1D distributions

: set of templates
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Theorems for the compact group

 I ∼ I '⇔OI = OI ' ⇔ PI = PI '
The image orbit and its associated

 probability distribution
 is invariant and unique

P
I ,t k
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gI gI ,t k = I ,g−1t k
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Theorems for the compact group

 I ∼ I '⇔OI = OI ' ⇔ PI = PI '
The image orbit and its associated

 probability distribution
 is invariant and unique

P
I ,t k

PI

gI gI ,t k = I ,g−1t k

This “movie” is stored during 
development

t k ,k = 1,...,K

For a SINGLE new image 
invariant and unique signature
consisting of 1D distributions

: set of templates
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Probability distribution from finite projections

| d(PI − PI ' ) − d̂K (PI − PI ') |≤ ε

Theorem: Consider     images       in      . Let              
where      is a universal constant. Then 

with probability          , for all                .

n I j Χn K ≥
c
ε 2
log n

δc

1− δ 2 I , I '∈Χn
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A	  moCvaCon	  for	  signatures:	  the	  Johnson-‐Lindenstrauss	  
theorem	  (features	  do	  not	  ma=er	  much!)
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...

Our basic machine: a HW module 
(dot products and histograms for an image in a receptive field window)

• The signature provided by complex cells at each “position” is 
associated with histograms of the simple cells activities that is

• Related quantities such as moments of the distributions are also 
invariant, for instance as computed by the energy model of 
complex cells or the max, related to the sup norm ---> we have a  
full theory of pooling  

• Neural computation/represnetation of a histogram requires a set 
of complex cells -- neurons with different thresholds

• Histograms provide uniqueness independently of pooling range

µn
k (I ) = 1

|G |
σ ( I ,git

k + nΔ)
i=1

|G |

∑
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Images, groups and orbits

Orbit OI

  I ∼ I 'if ∃g ∈G I ' = gIs.t.

Orbit	  	  	  	  	  	  	  	  can	  be	  proved	  to	  be	  	  
invariant	  and	  unique
OI

Thursday, December 5, 13



Orbit
Orbit:	  set	  of	  images	  gI	  generated	  from	  a	  single	  image	  I	  under	  the	  ac)on	  

of	  the	  group

Orbit is unique and invariant
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   Preview: group invariance theorems

•	  An	  orbit	  is	  fully	  characterized	  by	  the	  probability	  density

•	  An	  applicaCon	  of	  Cramer-‐Wold	  theorems	  suggests	  that	  that	  a	  
proxy	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  	  a	  set	  of	  K	  one-‐dimensional

•	  Since	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  it	  is	  possible	  to	  get	  
an	  invariant	  representaCon	  from	  a	  single	  image	  	  	  	  	  	  	  	  	  if	  all	  
transformaCons	  of	  	  	  	  	  	  	  	  	  	  	  	  are	  stored.	  

PG (gI )

PG (gI ) PG (< gI ,t
k >)

PG (< gI ,t
k >) = PG (< I ,g

−1t k >)
I

t k
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Projections of  Probabilities: Cramer-Wold
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Let

Consider

   Invariant projections theorem
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Plan

1.Motivation: models of cortex (and deep convolutional 
networks)

2.Core theory 
- the basic invariance module
- the hierarchy

3.Computational performance
4.Biological predictions
5. Theorems and remarks

– .
– invariance and sample complexity
– connections with scattering transform
– invariances and beyond perception
– ...

n→ 1
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Implementations/specific models: 
computational performance

• Deep convolutional networks (such as Lenet) as an 
architecture are special case of Mtheory (with just 
translation invariance and max/sigmoid pooling) 

• HMAX as an architecture is a special case of Mtheory (with 
translation + scale invariance and max pooling) and used 
to work well
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Models: computational performance

• Deep convolutional networks (such as Lenet) as an 
architecture are special case of Mtheory (with just 
translation invariance and max/sigmoid pooling) 

• HMAX as an architecture is a special case of Mtheory (with 
translation + scale invariance and max pooling) and used 
to work well

• Encouraging initial results in speech and music 
classification (Evangelopoulos, Zhang, Voinea)

• Example in face identification (Liao, Leibo) --->
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Contains 13,233 images of 5,749 people

Q.	  Liao,	  J.	  Leibo,	  NIPS	  2013

Computational performance: example 
faces

Labeled Faces in the Wild
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50Q.	  Liao,	  J.	  Leibo
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51Q.	  Liao,	  J.	  Leibo
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I want to go now into another part of the theory:

3. covariance allows to extend to hierarchies 
4.

Thursday, December 5, 13



Preview: from a HW module to a hierarchy
via covariance
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Preview: from a HW module to a hierarchy
via covariance

l=4

l=3

l=2

l=1

HW module

complex cell node gives output of the HW module

HW module
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Preview: from a HW module to a hierarchy
via covariance

Covariance theorem (informal): for isotropic networks the activity at a layer of “complex” cells for 
shifted an image at position g is equal to the activity induced by the group shifted  image at the shifted 
position. 
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Preview: from a HW module to a hierarchy
via covariance

Covariance theorem (informal): for isotropic networks the activity at a layer of “complex” cells for 
shifted an image at position g is equal to the activity induced by the group shifted  image at the shifted 
position. 

Remarks:

• Covariance allows to consider a higher level HW module, looking at the 
neural image at the lower layer and apply again the invariance/covariance 
arguments
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Toy example: 1D translation

=
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Toy example: 1D translation
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So far: compact groups in 

M-theory extend result to 

• partially observable groups 

• non-group transformations

• hierarchies of magic HW modules (multilayer)

M-Theory

R2
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Non	  compact	  groups

We assume that the dot products is “normalized":  the signals 
x and t are zero-mean and  norm = 1. Thus starting with x”, t”

We assume that the empty surround of an isolated image patch
has value 0, being equal to the average value over the ensemble
of images. In particular the dot product of a template and the 
region outside an isolated image patch is 0. 

x ' = x"− E(x"),     x = x '
| x ' |

;   

t'  = t"− E(t"),       t = t '
| t ' |
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For a transformation observed via a “receptive field” there is only 
“partial invariance”

Partially Observable  Groups
(includes non compact)

Let              with     Hilbert space,                       a set of bijective 
(positive) functions and       a locally compact group. Let          
and suppose                                .Then for any 

I ,t ∈H ηn :R→ R+

G G0 ⊆ G
H

supp I ,git
k ⊆ G0

g ∈G,t k , I

µn
k (I ) = µn

k (gI ) ⇔ I ,git
k = 0,∀g ∈G0 ∪ gG0 \ G0 ∩ gG0

eg if G0 ∪ gG0  is our universe 
then ∀g ∈G0 ∪ gG0 \ G0 ∩ gG0

can be written as ∀g ∈(G0 ∩ gG0 )c

Rosasco, poggio, Anselmi
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Invariance for POGs  implies a localization property we call

sparsity of the image    wrt the    dictionary under the set of 
transformations 

Example:  consider the case of a 1D parameter translation 
group: invariance of               with  pooling region             is 
ensured if 

                                 

[−b,b]

Partially Observable Groups

I t

µn
k (I )

I ,grt
k = 0,          for | r |> b − a

G
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Invariance, sparsity, wavelets

Thus sparsity implies, and is implied by, invariance.
Sparsity can be satisfied in two different regimes:

• exact sparsity for generic images  holds for affine group. 

• approximate sparsity of a subclass of      w.r.t. dictionary 
of transformed templates        holds locally for any smooth 
transformation. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

I
gt k
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Invariance, sparsity, wavelets

Theorem: Sparsity is necessary and sufficient condition for translation 
and scale invariance. Sparsity for translation (respectively scale) 
invariance is equivalent to the support of the template being small in 
space or frequency.

Proposition: Maximum simultaneous invariance to translation and scale 
is achieved by Gabor templates:

t(x) = e
−
x2

2σ 2 eiω0 x
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M-theory extends result to 

• non compact groups 

• non-group transformations 

• hierarchies of magic HW modules (multilayer)

M-Theory
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Non-group transformations: 
approximate invariance in class-specific 

regime

is locally invariant if:

-      is sparse in the dictionary of 

-       transforms in the same way (belong to the same class) as 

-    the transformation is sufficiently smooth

µn
k (I )

I t k

I t k
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Class specific pose invariance for faces 

Thursday, December 5, 13



M-theory extend result to 

• non compact groups 

• non-group transformations 

• hierarchies of magic HW modules (multilayer)

M-Theory
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Hierarchies of magic HW modules: 
key property is covariance

l=4

l=3

l=2

l=1HW module
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Local and global invariance: whole-parts 
theorem

For any signal (image) there is a layer in the hierarchy such that the 
response is invariant w.r.t. the signal transformation. 
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• Compositionality: signatures for wholes and for parts of 
different size at different locations

• Minimizing clutter effects

• Invariance for certain non-global affine transformations

• Retina to V1 map

Why multilayer architectures
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Invariance and uniqueness
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Invariance for parts and stability for wholes
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Plan

1.Motivation: models of cortex (and deep convolutional 
networks)

2.Core theory 
- the basic invariance module
- the hierarchy

3.Computational performance
4.Biological predictions
5. Theorems and remarks

– .
– invariance and sample complexity
– connections with scattering transform
– invariances and beyond perception
– ...

n→ 1
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Implementations/specific models: 
computational performance

• Deep convolutional networks (such as Lenet) as an 
architecture are special case of Mtheory (with just 
translation invariance and max/sigmoid pooling) 

• HMAX as an architecture is a special case of Mtheory (with 
translation + scale invariance and max pooling) and used 
to work well
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Models: computational performance

• Deep convolutional networks (such as Lenet) as an 
architecture are special case of Mtheory (with just 
translation invariance and max/sigmoid pooling) 

• HMAX as an architecture is a special case of Mtheory (with 
translation + scale invariance and max pooling) and used 
to work well

• Encouraging initial results in speech and music 
classification (Evangelopoulos, Zhang, Voinea)

• Example in face identification (Liao, Leibo) --->
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Contains 13,233 images of 5,749 people

Q.	  Liao,	  J.	  Leibo,	  NIPS	  2013

Computational performance: example 
faces

Labeled Faces in the Wild
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78Q.	  Liao,	  J.	  Leibo
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79Q.	  Liao,	  J.	  Leibo
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Plan

1.Motivation: models of cortex (and deep convolutional 
networks)

2.Core theory 
- the basic invariance module
- the hierarchy

3.Computational performance
4.Biological predictions
5. Theorems and remarks

– .
– invariance and sample complexity
– connections with scattering transform
– invariances and beyond perception
– ...

n→ 1
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Theory of unsupervised invariance learning 
in hierarchical architectures

• neurally plausible: HW module of simple-complex cells
• says what simple-complex cells compute
• provides a theory of pooling: energy model, average, max...
• leads to a new characterization of complex cells
• provides a computational explanation of why Gabor tuning 
• may explain tuning and 

functions of V1, V2, V4
and in face patches!

• suggests generic, Gabor-like
tuning in early areas and 
specific selective 
tuning higher up poggio, anselmi, rosasco, tacchetti, leibo, liao
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Plan

1.Motivation: models of cortex (and deep convolutional 
networks)

2.Core theory 
- the basic invariance module
- the hierarchy

3.Computational performance
4.Biological predictions
5. Theorems and remarks

– .
– invariance and sample complexity
– connections with scattering transform
– invariances and beyond perception
– ...

n→ 1
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Musing on technology:
a second phase in Machine Learning?

• The first phase -- from ~1980s -- led to a rather complete 
theory of supervised learning and to practical systems 
(MobilEye, Orcam,...) that need lots of examples for 
training:

• The second phase  may be about unsupervised learning of 
(invariant) representations that make supervised learning 
possible with very few examples:    

n→∞

n→ 1
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