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Vector Spaces

Vector Space

e A vector space is a set V with binary operations
+:VxV—=>V and -:RxV >V

such that for all a,b € R and v,w,x € V:

Qv+w=w+v

Q V+w)+x=v+ (w+x)

@ There exists 0 € V such that v+ 0=v forallveV

@ For every v € V there exists —v € V such that v+ (—v) =0
@ a(bv) = (ab)v

Q lv=v

@ (a+bjv=av+bv

Q av+w)=av+aw
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Vector Spaces

Vector Space

e A vector space is a set V with binary operations
+:VxV—=>V and -:RxV >V

such that for all a,b € R and v,w,x € V:

Qv+w=w+v

Q V+w)+x=v+ (w+x)

@ There exists 0 € V such that v+ 0=v forallveV

@ For every v € V there exists —v € V such that v+ (—v) =0
@ a(bv) = (ab)v

Q lv=v

@ (a+bjv=av+bv

Q av+w)=av+aw

o Example: R™, space of polynomials, space of functions.
p )y SPp poly
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Vector Spaces

Inner Product

e An inner product is a function (-,-): V x V — R such
that for all a,b € R and v,w,x € V:
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Vector Spaces

Inner Product

e An inner product is a function (-,-): V x V — R such
that for all a,b € R and v,w,x € V:

Q (v,w) = (w,v)
Q (av+bw,x) = a(v,x) +bw,x)
@ (v,v) 20 and (v,v) =0 if and only if v = 0.
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Vector Spaces

Inner Product

e An inner product is a function (-,-): V x V — R such
that for all a,b € R and v,w,x € V:

Q (v,w) = (w,v)
Q (av+bw,x) = a(v,x) +bw,x)
@ (v,v) 20 and (v,v) =0 if and only if v = 0.

e v,w € V are orthogonal if (v,w) = 0.

L. Rosasco Functional Analysis Review



Vector Spaces

Inner Product

e An inner product is a function (-,-): V x V — R such
that for all a,b € R and v,w,x € V:

Q (v,w) = (w,v)
Q (av+bw,x) = a(v,x) +bw,x)
@ (v,v) 20 and (v,v) =0 if and only if v = 0.

e v,w € V are orthogonal if (v,w) = 0.

e Given W C V, we have V=W @ W=, where
WL ={veV|{v,w)=0 foralwe W}
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Vector Spaces

Inner Product

e An inner product is a function (-,-): V x V — R such
that for all a,b € R and v,w,x € V:

Q (v,w) = (w,v)

Q (av+bw,x) = a(v,x) +bw,x)

@ (v,v) 20 and (v,v) =0 if and only if v = 0.
e v,w € V are orthogonal if (v,w) = 0.

e Given W C V, we have V=W @ W=, where
WL ={veV|{v,w)=0 foralwe W}

o Cauchy-Schwarz inequality: (v, w) < (v, v)1/2(w, w)1/2,
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Vector Spaces

o Can define norm from inner product: ||v|| = (v,v)/2.
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Vector Spaces

e A norm is a function || - [|: V — R such that for all a € R
and v,w € V:

@ |[v| >0, and |jv|| = 0 if and only if v =0
Q vl =lal v
Q [v+wl <[l + [[wl

o Can define norm from inner product: ||v|| = (v,v)/2.
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Vector Spaces

Metric

e Can define metric from norm: d(v,w) = |[v—w||.
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Vector Spaces

Metric

@ A metric is a function d: V x V — R such that for all
v, W,x € V:
Q@ d(v,w) >0, and d(v,w) =0 if and only if v=w
Q dv,w) =d(w,v)
Q d(v,w) < d(v,x) + d(x,w)

e Can define metric from norm: d(v,w) = |lv—w||.
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Vector Spaces

@ B={vq,...,vn}is a basis of V if every v € V can be
uniquely decomposed as

V=aiVvi + -+ anvn

for some ay,...,an € R.
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Vector Spaces

@ B={vq,...,vn}is a basis of V if every v € V can be
uniquely decomposed as

V=aiVvi + -+ anvn

for some ay,...,an € R.

o An orthonormal basis is a basis that is orthogonal
({(vi,vj) =0 for i #j) and normalized (||vi|| = 1).
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© Hilbert Spaces
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Hilbert Spaces

Hilbert Space, overview

e Goal: to understand Hilbert spaces (complete inner
product spaces) and to make sense of the expression

f=) (fdu)di, feXH

0
i=1

@ Need to talk about:

@ Cauchy sequence
@ Completeness
@ Density

© Separability
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Hilbert Spaces

Cauchy Sequence

o Recall: limn o xn = x if for every € > 0 there exists
N € N such that ||[x —xn|| < € whenever n > N.
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Hilbert Spaces

Cauchy Sequence

o Recall: limn o xn = x if for every € > 0 there exists
N € N such that ||[x —xn|| < € whenever n > N.

@ (xn)nen is a Cauchy sequence if for every € > 0 there
exists N € N such that ||x;y —Xn|| < € whenever m,n > N.
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Hilbert Spaces

Cauchy Sequence

o Recall: limn o xn = x if for every € > 0 there exists
N € N such that ||[x —xn|| < € whenever n > N.

@ (xn)nen is a Cauchy sequence if for every € > 0 there
exists N € N such that ||x;y —Xn|| < € whenever m,n > N.

e Every convergent sequence is a Cauchy sequence (why?)
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Hilbert Spaces

Completeness

@ A normed vector space V is complete if every Cauchy
sequence converges.
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Hilbert Spaces

Completeness

@ A normed vector space V is complete if every Cauchy
sequence converges.

o Examples:
@ Q is not complete.
@ R is complete (axiom).
@ R™ is complete.

@ Every finite dimensional normed vector space (over R) is
complete.
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Hilbert Spaces

Hilbert Space

o A Hilbert space is a complete inner product space.
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Hilbert Spaces

Hilbert Space

o A Hilbert space is a complete inner product space.
o Examples:

Qo R"

@ Every finite dimensional inner product space.

Q L={(an)y_, lan €R, Y7 a} < oo}

Q@ Ly([0,1]) ={f: [0,1] = R [} f(x)? dx < oo}
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Hilbert Spaces

Density

e Yis dense in Xif Y = X.
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Hilbert Spaces

Density

e Yis dense in X if Y = X.
o Examples:

Q@ Q is dense in R.

@ Qm is dense in R™.

@ Weierstrass approximation theorem: polynomials are dense
in continuous functions (with the supremum norm, on
compact domains).
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Hilbert Spaces

Separability

e X is separable if it has a countable dense subset.
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Hilbert Spaces

Separability

e X is separable if it has a countable dense subset.
o Examples:

O R is separable.

@ R™ is separable.

@ {5, L5([0,1]) are separable.
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Hilbert Spaces

Orthonormal Basis

o A Hilbert space has a countable orthonormal basis if and
only if it is separable.

o Can write:

f=) (f,di)ds forall f € H.

00
i=1
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Hilbert Spaces

Orthonormal Basis

o A Hilbert space has a countable orthonormal basis if and
only if it is separable.

o Can write:

f=>Y (f,di)d; forall f e H.

i=1

o Examples:
@ Basis of £ is (1,0,...,), (0,1,0,...), (0,0,1,0,...),...
@ Basis of L»([0,1]) is 1, 2sin 27nx, 2 cos 27tnx for n € N

L. Rosasco Functional Analysis Review



Functionals and Operators (Matrices)

@ Functionals and Operators (Matrices)




Functionals and Operators (Matrices)

Maps

Next we are going to review basic properties of maps on a
Hilbert space.
o functionals: ¥:H — R

o linear operators A : H{ — J{, such that
A(af +bg) = aAf + bAg, with a,b € R and f,g € H.
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Functionals and Operators (Matrices)

Representation of Continuous Functionals

Let J{ be a Hilbert space and g € J, then
Yg(f) ={f,9), feXH

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional W
can be written uniquely in the form,

for some appropriate element g € H.
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Functionals and Operators (Matrices)

Matrix

o Every linear operator L: R™ — R™ can be represented by
an m X n matrix A.




Functionals and Operators (Matrices)

Matrix

o Every linear operator L: R™ — R™ can be represented by
an m X n matrix A.

o If A € R™X™ the transpose of A is AT € R™*™ gatisfying

(Ax,y)rm = (Ax) Ty =xTATy = (x, ATy)gn
for every x € R™ and y € R™.
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Functionals and Operators (Matrices)

Matrix

o Every linear operator L: R™ — R™ can be represented by
an m X n matrix A.

o If A € R™X™ the transpose of A is AT € R™*™ gatisfying

(Ax,y)rm = (Ax) Ty =xTATy = (x, ATy)gn
for every x € R™ and y € R™.

o A is symmetric if AT = A.
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Functionals and Operators (Matrices)

Eigenvalues and Eigenvectors

o Let A € R™™™. A nonzero vector v € R™ is an eigenvector
of A with corresponding eigenvalue A € R if Av = Av.
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Functionals and Operators (Matrices)

Eigenvalues and Eigenvectors

o Let A € R™™™. A nonzero vector v € R™ is an eigenvector
of A with corresponding eigenvalue A € R if Av = Av.

e Symmetric matrices have real eigenvalues.
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Functionals and Operators (Matrices)

Eigenvalues and Eigenvectors

o Let A € R™™™. A nonzero vector v € R™ is an eigenvector
of A with corresponding eigenvalue A € R if Av = Av.

e Symmetric matrices have real eigenvalues.
o Spectral Theorem: Let A be a symmetric n X n matrix.

Then there is an orthonormal basis of R™ consisting of the
eigenvectors of A.
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Functionals and Operators (Matrices)

Eigenvalues and Eigenvectors

o Let A € R™™™. A nonzero vector v € R™ is an eigenvector
of A with corresponding eigenvalue A € R if Av = Av.

e Symmetric matrices have real eigenvalues.

o Spectral Theorem: Let A be a symmetric n X n matrix.
Then there is an orthonormal basis of R™ consisting of the
eigenvectors of A.

e Eigendecomposition: A = VAV, or equivalently,

n
A= Z }\iViViT-
i=1
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Functionals and Operators (Matrices)

Singular Value Decomposition

e Every A € R™*™ can be written as
A=ULV',

where U € R™*™ ig orthogonal, £ € R™*™ is diagonal,
and V € R™*™ is orthogonal.
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Functionals and Operators (Matrices)

Singular Value Decomposition

e Every A € R™*™ can be written as
A=ULV',

where U € R™*™ ig orthogonal, £ € R™*™ is diagonal,
and V € R™*™ is orthogonal.

e Singular system:

T 2
Av; = ojuy AA U = o7y
T T 2

A Uy = 0iVvi A A\Ji = 03Vi

Functional Analysis Review



Functionals and Operators (Matrices)

Matrix Norm

o The spectral norm of A € R™*™ ig

HAHSpeC = GmaX(A) - \/)\maX(AAT) - \/Amax(ATA)-
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Functionals and Operators (Matrices)

Matrix Norm

o The spectral norm of A € R™*™ ig

HAHSpeC = GmaX(A) - \/)\maX(AAT) - \/Amax(ATA)-

o The Frobenius norm of A € R™*™ js
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Functionals and Operators (Matrices)

Positive Definite Matrix

R™XM g positive definite if

A real symmetric matrix A €
x'Ax >0, Vxe€R™.

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by >.
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Linear Operators

Linear Operator

@ An operator L: H; — Hy is linear if it preserves the linear
structure.
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Linear Operators

Linear Operator

@ An operator L: H; — Hy is linear if it preserves the linear
structure.

o A linear operator L: H; — Hs is bounded if there exists
C > 0 such that

||Lng{2 < CHng‘Cl for all f € :}Cl.
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Linear Operators

Linear Operator

@ An operator L: H; — Hy is linear if it preserves the linear
structure.

o A linear operator L: H; — Hs is bounded if there exists
C > 0 such that

||Lng{2 < CHng‘Cl for all f € :}Cl.

@ A linear operator is continuous if and only if it is bounded.

Functional Analysis Review



Linear Operators

Adjoint and Compactness

@ The adjoint of a bounded linear operator L: H; — Hs is a
bounded linear operator L*: Hy — H; satisfying

<Lf, g>g-(2 = <f, L*g>g{1 for all f € g’fl, gec j‘fg.

o L is self-adjoint if L* = L. Self-adjoint operators have real
eigenvalues.

L. Rosasco Functional Analysis Review



Linear Operators

Adjoint and Compactness

@ The adjoint of a bounded linear operator L: H; — Hs is a
bounded linear operator L*: Hy — H; satisfying

<Lf, g>g-(2 = <f, L*g>g{1 for all f € g’fl, gec j‘fg.

o L is self-adjoint if L* = L. Self-adjoint operators have real
eigenvalues.

@ A bounded linear operator L: H; — Hs is compact if the
image of the unit ball in H; has compact closure in Hs.
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Linear Operators

Spectral Theorem for Compact Self-Adjoint Operator

o Let L: H — H be a compact self-adjoint operator. Then
there exists an orthonormal basis of JH consisting of the
eigenfunctions of L,

Ldpi = Ay

and the only possible limit point of A; as 1 — oo is 0.

L. Rosasco Functional Analysis Review



Linear Operators

Spectral Theorem for Compact Self-Adjoint Operator

o Let L: H — H be a compact self-adjoint operator. Then
there exists an orthonormal basis of JH consisting of the
eigenfunctions of L,

Ldpi = Ay

and the only possible limit point of A; as 1 — oo is 0.

o Eigendecomposition:
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