Neurons and Neural Computation

- I. Importance of Neural Computation
 - Neuroscience: What brain tissue does.
 - Computational theory of mind: Implementing elementary information processes.

The Resting Potential
9.00 Introduction to Psychology
Prof. S. Pinker
Week 4, Lecture 2: Neural Computation

The Action Potential
- Repolarization phase of action potential
- Depolarization phase of action potential

Synaptic Transmission

Excitatory and Inhibitory Synapses
- The terminals of this axon have excitatory effects.
- The terminals of this axon have inhibitory effects.
Feature Detectors

Neural Computation

- Computing logical functions with neurons.
 Kosher =
 \{ [Chews its cud] AND [Has cloven hooves]} OR \\
 \{ [Has fins] AND [Has scales]} \\

Neural Computation

- Multiply each input signal by the "weight" (strength) of the synapse.
- Sum the weighted signals.
- If they exceed the cell's threshold, fire.

Building Logic Gates out of Neurons
Local vs. Distributed Representations

- Local representation: “grandmother cell,” “yellow Volkswagen detector”
- Distributed representation; “auto-associator”:

Pattern completion by auto-associators:

Learning in Neural Networks

- **Neural Computation:**
 - Multiply each input signal by the "weight" (strength) of the synapse.
 - Sum the weighted signals.
 - If they exceed the cell's threshold, fire.
- **Neural Learning:**
 - Change the weights of synapses.
 - Change the thresholds of cells.
Learning in Neural Networks, continued

- Real but simple example of learning in a neural network: Aplysia (sea snail). See textbook.
- More complex but still hypothetical form of neural learning:

Perceptron Learning Procedure

- Compare current output to correct output (from "teacher").
- If too low, increase weights for active inputs, and decrease threshold.
- If too high, decrease weights for active inputs, and increase threshold.

How a two-layer network can learn "OR" with the perceptron learning procedure.

Input: 1 0
Correct Output: 1
Actual Output: (1 X 0) + (0 X 0) = 0. 0 < 1.0. Therefore 0.
Too small.
Increase first weight by .1.
Leave second weight alone.
Decrease threshold by .1.
A 3-layer network that *can* compute XOR:

But: A three-layer network needs a fancier learning procedure: “Error back-propagation.”

Relating Neural Networks to Psychology

- Lateral inhibition: Turn on your own output; turn down your neighbor's output.
9.00 Introduction to Psychology
Prof. S. Pinker
Week 4, Lecture 2: Neural Computation

Lateral inhibition as an explanation for:
- Mach bands
- The Hering grid
- Simultaneous contrast
Each step in the photograph has a uniform intensity, but the perceived intensity of each step is not uniform. The output pattern (solid line) produced for the defined input intensity distribution. From: Cowan and Dror (2007).

FIGURE 2-10: The Helson grid. Gray spots appear at each intersection, except the one you are looking at.
9.00 Introduction to Psychology
Prof. S. Pinker
Week 4, Lecture 2: Neural Computation

Relating Neural Networks to Psychology, continued

• **Opponent process circuits:**
 – Two inputs to one cell, from opposite kinds of stimuli (red/green, dark/light, move up/down, etc.
 – A signal for one perceptual quality excites an output; a signal for the complementary quality inhibits the output.
 – The level of activity of the output (excited or inhibited relative to resting level) determines the perceived quality.

Lateral Inhibition + Opponent-Process =

• Simultaneous *color* contrast (similar to simultaneous lightness contrast, but with color, not lightness, affected by neighboring patch)
• **Habituation:** Neurons that fire a lot over a long period of time "get tired."

• Opponent-process circuitry plus habituation:
 - Show stimulus A for a long time → A cells habituate
 - Show neutral stimulus → A cells habituated (below resting rate), B cells fresh (at resting rate)
 - B > A, so perceive neutral stimulus as B

• Explains:
 - Color aftereffects
 - Motion aftereffects