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I first review the standard Jordan-Wigner transformation in 1D, and apply it to the transverse field
Ising model as an example. I then discuss how locality is not preserved when one naively generalize
the Jordan-Wigner transformation from 1D to higher dimensions, and a way to circumvent this
problem by using loop gas states and the parton construction.

I. INTRODUCTION

Duality between different systems oftentimes points
to unifying themes that deepen our understanding
of statistical models and phases of matter. For
example, Kramers-Wannier transformation between the
high temperature and low temperature expansion of
the 2D Ising model allows one to pinpoint the critical
temperature of the Ising transition, and it also points
to interesting lattice gauge theory when one apply
Kramers-Wannier transformation to the low-temperature
expansion of the 3D Ising model [1]. Another example
is the Jordan-Wigner (JW) transformation, which is an
exact mapping between fermionic and spin (i.e. hard-core
boson) systems, which may come as a surprise given the
drastically different (anti)commutation relation between
fermionic and bosonic operators. Nonetheless, it provides
a powerful duality between systems that, at the surface
level, might be drastically different; problems that are too
difficult in the fermionic description might become more
amenable after applying Jordan-Wigner transformation
and obtaining the bosonic description of the system, and
vice versa. It also provide an ready-made way to generate
bosonic/fermionic version of interesting systems.

Originally, it is thought that the existence of such
mapping is a peculiarity with 1D systems; however,
recently developments in generalizing JW transformation
to higher dimension suggest otherwise [2–7]. In this
paper, I will go through in detail the formalism as
presented in Ref. [6].

II. 1D JW TRANSFORMATION

A. Generalities

The Jordan-Wigner transformation make use of the
fact that the dimension of the Hilbert space of a single
fermion is 2, which the same as that of a spin-1/2 particle.
One can either choose the basis to be in terms of the
fermionic occupation basis |0⟩ , |1⟩ or in terms of the
spin-1/2 basis: |↑⟩ , |↓⟩. What remains to be done is to
establish a correspondence between operators acting on
the two Hilbert space.

The most tricky part in establishing the operator
correspondence is that bosonic operators at distinct sites
commute, whereas fermionic operators at distinct sites

anticommute. Therefore, in representing a fermionic
operator in terms of bosonic operators, one has to incur
the extra cost of making the bosonic operator nonlocal
in order to faithfully reproduce the anticommutation
relation.
Consider a 1D chain of spinless complex fermion. In

the second quantized notation, the occupied state |1⟩ =
f† |0⟩, where f, f† are fermionic operators that satisfy
the following anticommutation relations{

fi, f
†
j

}
= δij , {fi, fj} = 0,

{
f†
i , f

†
j

}
= 0.

One can also express the complex fermion operators in
terms of the Majorana operators,

f†
n =

1

2
(γn + iγ′

n), f =
1

2
(γn − iγ′

n)

which can be viewed as the real and imaginary part of
the complex fermionic operator.
In terms of the Majorana operators γn, γ

′
n for each site

n, the 1D JW is given by

γn ↔

(
n−1∏
i=0

σz
i

)
σx
n (1)

γ′
n ↔

(
n−1∏
i=0

σz
i

)
σy
n (2)

and in terms of the complex fermion operators,

f†
n =

1

2
(γn + iγ′

n) =

(
n−1⊗
i=1

σz
i

)
⊗ σ+

n ⊗ 1⊗ · · · ⊗ 1 (3)

fn =
1

2
(γn − iγ′

n) =

(
n−1⊗
i=1

σz
i

)
⊗ σ−

n ⊗ 1⊗ · · · ⊗ 1 (4)

where σi are the Pauli matrices. Since σz anticommute
with σ± = 1

2 (σ
x ± iσy), it matches up with the

anticommutation relation between f, f† on the fermionic
side. On the bosonic side (i.e. right hand side of
above equations), the strings of σz to the left of the
site n is called the JW string. We see that in order
to preserve the anticommutation relation between the
fermionic operators on the fermionic side of the JW



2

transformation, we need to introduce non-local JW string
on the bosonic side. However, since the Hamiltonian is
local, the non-local JW string has to cancel out for terms
in the Hamiltonian such that locality is still preserved.
This is an important property and we would want the
higher dimensional generalization of JW transformation
to also have this property. We will discuss this further
in later sections. Let’s first consider an example that
showcase the power of Jordan-Wigner transformation.

B. Example: 1D Transverse field Ising model

The Hamiltonian of the 1D Transverse field Ising model
(with open boundary condition) is given by

H = J

N−1∑
i=1

XiXi+1 + h

N∑
i=1

Zi

where Xi, Zi are Pauli operators at site i. Without the
trasverse field term, we can straightforwardly conclude
the ground state of the Hamiltonian to be ⊗i |+⟩i, the
product state of eigenvector ofXi. However, the presence
of the Z transverse field necessitate some quantum
fluctuations that render the product state of |+⟩ no
longer the true ground state.

One way to exactly solve the model (and thereby find
the true ground state) is to use JW transformation,
mapping the bosonic spin operators to fermionic
Majorana operators, such that the terms in the
Hamiltonian are mapped to fermion bilinears

−XiXi+1 ↔ iγ′
iγi+1 (5)

−Zi ↔ iγiγ
′
i (6)

such that the Hamiltonian becomes

H = −J
∑
i

iγ′
iγi+1 − h

∑
i

iγiγ
′
i.

One can rewrite this Hamiltonian in terms of complex
fermion operators instead of the Majorana operators to
obtain

H =
∑
i

Jc†i+1ci + h
∑
i

c†i−1c
†
i + h.c.

where h can be interpreted as the order parameter
of a superconductor at the mean-field level. At this
point one realizes this is exactly the Hamiltonian for
the Kitaev chain, and it can be exactly diagonalized
in the momentum basis, since it is a free fermionic
problem. This concludes our discussion on the 1D case,
let’s proceed to the 2D case.

FIG. 1. Naive linearization. (a) Spiral ordering of lattice sites

on a 2D square lattice. (b) The hopping term c†2c10 appears
non-local in the bosonic description, as it involves a JW string
that need to tranverse all sites between 2 and 10.

III. NAIVE GENERALIZATION: A 2D CASE
STUDY

A. Problem

Building on the success of the 1D JW transformation,
the minimal effort approach to generalize the JW
transformation to higher dimensions is to linearize the
higher dimensional system so as to reduce it to an
effective one dimensional system.
Let’s try this on fermions on the square lattice for

concreteness. One can linearize the 2D square lattice by
imposing some ordering to the lattice sites in the square
lattice. For example, after choosing the origin, we can
create a spiral-like ordering of the lattice site as shown
in Fig. 1(a).
After linearizing our system into an effective 1D

system, we then apply the 1D JW transformation and
obtain the bosonic description of the system. However,
there is one undesirable properties of this generalization:
locality in the 2D lattice is obscured; terms that are
local in the 2D square lattice can appear to be highly
nonlocal in the 1D description. For example, a nearest

neighbor term, such as c†2c10, in the 2D square lattice
across neighboring lines will appear a long string around
the square lattice as shown in Fig. 1(b).
This is undesirable, as local terms on the fermionic side

becomes highly nonlocal on the bosonic side after the JW
transformation. We want to find a way to make sure that
locality is manifest on both bosonic and fermionic side of
the JW transformation.

B. Solution: conceptual level

At a conceptual level, the resolution is to allow for
only loop gas state, i.e. state that are invariant under the
action of a closed loop (formed by linking the two ends of
a JW string); we refer to this as the plaquette constraint.
Then, any JW string corresponding to a hopping term
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FIG. 2. In a loop gas state, a loose JW string can be deformed
and straightened into a shortest-distance string between two
sites.

can be straightened to be only within the support of a
local term, as shown in Fig. 2.

There is one price we pay for imposing the plaquette
constraint: we are restricting the dimension of our
Hilbert space to only that spanned by loop gas
state. In order to construct an exact duality for the
higher-dimensional JW transformation, we expect the
Hilbert space dimension to be the same on either of
the transformation. Therefore, we need to preemptively
enlarge our Hilbert space on the bosonic side, such that
after imposing the plaquette constraint, the restricted
Hilbert space has the same dimension as that of the
fermionic Hilbert space. We will see in later sections
that the parton construction enable us to fractionalize
particles and enlarge the Hilbert space.

IV. GENERAL THEORY OF 2D JW

As a road map for how higher-dimensional JW
transformation is constructed, I will discuss 1) how local
fermionic operators are mapped to bosonic operators by
using an Lie group exceptional isomorphism, 2) use the
parton construction to enlarge the Hilbert space, and 3)
impose the plaquette constraints to faithfully represent
the fermionic operators while maintaining the locality
for fermionic bilinear operators. As a convention, from
here onward I will refer to JW transformation in the
direction from the fermionic to bosonic system. And
for concreteness, we will focus on 2D square lattice with
periodic boundary condition.

A. Exceptional isomorphism

Let’s first see how to construct the operator
correspondence in general. Starting with a single site of
spinful electron with 2 complex fermion modes f j , f†j ;
just as in the 1D case, we can express the complex
fermion operators in terms of the Majorana operators:

γ2j−1 = f j + f j† γ2j = i(f j − f j†)

with anticommutation relation
{
γα, γβ

}
= 2δαβ .

Terms in the Hamiltonian need to be Hermitian and

local, so it is generated by fermion bilinear of the form

θαβ0 =
i

2
γαγβ (7)

for α ̸= β (since otherwise by anti-commutation it is
trivially 1); the 0 subscript emphasizes that we are in
the representation defined using the physical DoF. The
fermion bilinears satisfies the commutation relation of the
Lie algebra so(4):[

θαβ0 , θγδ0

]
= i
(
δαδθβγ0 − δαγθβδ0 + δβγθαδ0 − δβδθαγ0

)
.

After exponentiation,

e−iξθαβ
0 = cos

ξ

2
+ sin

ξ

2
γαγβ .

One may initially expect it to be an element of the Lie
group SO(4); however, for ξ = 2π, the Lie group element
is −1 instead of 1, so the Lie group is actually Spin(4)
instead of SO(4). Also note that for ξ = π, the Lie group
element is γαγβ itself. So γαγβ can be viewed as either
a Lie group or Lie algebra element.
The Lie group Spin(4) has an exceptional isomorphism

Spin(4) = SUs(2)× SUc(2) (8)

such that given the spinful electron, we can decompose
it into two decoupled sectors: s stands for the spin
sector, and c stands for the charge sector. SUc(2) is
the even-parity sector spanned by the states |0⟩ and
f↑†f↓† |0⟩ (both are spin singlet); whereas SUs(2) is the
odd-parity sector spanned by the states f↑† |0⟩ and f↓† |0⟩
(both transforms as spin-1/2). The generators of the two
sectors are

τ i0 =
1

2

(
f↑† f↓†)σi

(
f↑

f↓

)
(9)

χi
0 =

1

2

(
f↑† f↓)σi

(
f↑

f↓†

)
(10)

where σi are again the Pauli matrices, τ i0 are the
generators for the SUs(2) sector, and χi

0 are the
generators for the SUc(2) sector. The generators
are chosen to satisfy [σi, χj ] = 0, i.e. the two
sectors are decoupled. This is reasonable since unitary
transformations generated by fermion bilinears doesn’t
change fermion parity, so the two sectors do not mix.
The motivation for the naming of the two sectors is
as follows: the odd-parity sector transforms as usual
spin-1/2, whereas for the even-parity, since rotation
changes the particle number, it is a ”charged” rotation.
The exceptional isomorphism is the key

bridge that gives rise to the Jordan-Wigner
transformation: we can map between fermionic
operator that generates Spin(4) to bosonic
operators that generates SUs(2) and SUc(2).
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B. Parton construction

Next, we use parton construction to enlarge our Hilbert
space in anticipation of the plaquette constraints we
will impose later. Parton construction is a way of
fractionalizing particles into constituents; In the current
case, we will fractionalize a spinful electron into a spinon
and a chargeon/holon. So we express the generators of
the two SU(2) sectors as

τ i =
1

2

(
u† d†

)
σi

(
u
d

)
(11)

χi =
1

2

(
c† h†)σi

(
c
h

)
(12)

where u, d are the spinons that carry the original
spin-1/2 of the electron but not its charge; c, h are also
fermionic, but they are spinless and carry electric charge
±1. Since we have introduced 4 fermionic modes u, d, c, h,
so the starting Hilbert space is 24 = 16. Effectively, we
have embedded our original 4-dimensional Hilbert space
(two from spin and two from fermion occupancy) into the
16-dimensional Hilbert space of these partons.

The parton fermion parity at a site r is defined as

Γr ≡ eiπ(u
†u+d†d+c†c+h†h) = e−i2πθαβ

(13)

for any α ̸= β, and Γ satisfies

Γ2 = 1,

so it eigenvalues are ±1. We choose to restrict our
Hilbert space to just the eigensubspace of Γ = −1, in
order to maintain the fermionic statistics (which follows

from e−i2πθαβ

= −1 as that defines the Spin(4) instead of
SO(4) group). This reduces the Hilbert space dimension
from 16 to 8. The Hilbert space dimension will be further
halved when nontrivial constraints from the lattice after
imposing the plaquette constraints with multiple sites.

1. Local terms

So far, we have restricted our attention to just a single
site. Let’s summarise the JW transformation for such
on-site terms. There are 6 possible fermion bilinear
iγαγβ for 1 ≤ α, β ≤ 4 (only nonzero for α ̸= β),
and one quartic term γ1γ2γ3γ4 that could appear in

the Hamiltonian; we can obtain them as elements in the
Spin(4) Lie group by doing a π rotation:

iγαγβ 7→ Θαβ ≡
√
Γe−iπθαβ

(14)

this is the bosonized operator of the fermionic bilinear.
As for the quartic term, the identification is γ1γ2γ3γ4 =

e−iπθ12

e−iπθ34

.
After above bosonization, we can check that the

algebraic relations between Θαβ is the same as that of
fermionic bilinear iγαγβ , provided that we are in the
Γ = −1 subspace:

ΘαβΘβγ = ΓΘβγΘαβ for distinct α, β, γ, δ

[Θαβ ,Θγδ] = 0 for distinct α, β, γ, δ

Let’s illustrate with a few common on-site terms. The
electron number operator n =

∑
σ f

σ†fσ is mapped to

n = 1− 1

2
(iγ1γ2 + iγ3γ4) 7→ 1− 1

2
(Θ12 +Θ34).

The on-site interaction term is mapped to

(n− 1)2 =
1

2

[
(iγ1γ2)(iγ3γ4) + 1

]
7→ 1

2
(Θ12Θ34 + 1)

2. Hopping terms

We first assign an orientation to each edge of the square
lattice, such that it is now a directed graph. For fermionic
bilinear that are across two nearest neighbor sites r and
r′, we map it to a bilocal operator

iγ̂α
r γ̂

β
r′ ↔ ±Λ̂αα

r Λ̂ββ
r′ (15)

The sign of the bilocal operator is determined as
follows: if the direction of the arrow from r to r′ matches
with the orientation of the edge on the directed graph,
then we assign the + sign; we assign the − sign if the
direction is opposite.
There are a few properties we require Λαα to satisfy,

as detailed in Ref. [6]. One property worth highlighting
is that we require Λαα

r to commute with the parton
parity Γr, since we need to be able to restrict to the
Γ− eigensubspace.
Next, we consider how hopping terms beyond nearest

neighbors are mapped under JW transformation. For
example, for a fermionic hopping term iγ3

rγ
4
r−x̂+ŷ, we can

insert identities γ2
r = 1 to obtain

iγ3
rγ

4
r−x̂+ŷ = (−i)3

(
iγ̂3

r γ̂
2
r

)(
iγ̂2

r γ̂
1
r+ŷ

)(
iγ̂1

r+ŷγ̂
3
r+ŷ

)(
iγ̂3

r+ŷγ̂
4
r−x̂+ŷ

)
where we note that each term within a pair of

parantheses is entierh on-site or nearest-neighbor, which
has a bosonic analog, so we can map to the corresponding
bosonic operators:
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iγ3
rγ

4
r−x̂+ŷ 7→

√
Γ̂r

†
(√

Γ̂r+ŷ

†
)2

Θ̂32
r

(
Λ̂22
r Λ̂11

r+ŷ

)
Θ̂13

r+ŷ

(
−Λ̂33

r+ŷΛ̂
44
r−x̂+ŷ

)
= −

(√
Γ̂rΘ̂

32
r Λ̂22

r

)(
Γ̂r+ŷΛ̂

11
r+ŷΘ̂

13
r+ŷΛ̂

33
r+ŷ

)
Λ̂44
r−x̂+ŷ

The mapping of the phase factor i is a bit more subtle:
as Γ̂r is spatially dependent, so the position dependence
is determined by where the identity γ2

r = 1 is inserted.
The 2nd rewriting (organized by the site labels)

motivate us to define

Λ̂αβ
r ≡

√
Γ̂r

†
Θ̂αβ

r Λ̂ββ
r ; (16)

Φ̂αβ
r ≡

√
Γ̂rΛ̂

αα
r Λ̂αβ

r = Γ̂rΛ̂
αα
r Θ̂αβ

r Λ̂ββ
r (17)

where Φ̂αβ
r = Γ̂rΦ̂

αβ
r , such that the JW transformation

on the fermionic hopping term can be expressed simply
as

iγ3
rγ

4
r−x̂+ŷ 7→ −Λ̂32

r Φ̂13
r+ŷΛ̂

44
r−x̂+ŷ

We can view Φ̂13
r+ŷ as the JW string that connects

between the two sites at r and r − x̂ + ŷ. In general,
for longer-ranged hopping term, it would consist of more
Φ̂αβ terms, corresponding to an enlongated JW string
that connects two farther-off sites.

C. Plaquette constraints

There are multiple ways of connecting two sites on a
square lattice. At the moment, they would correspond
to different JW strings that act on different sites, so the
bosonized state we obtain might not be the same. To put
all JW strings connecting two sites on the same footing,
we impose the plaquette constraint on the bosonic side

Φ̂24
r Φ̂32

r+x̂Φ̂
13
r+x̂+ŷΦ̂

41
r+ŷ = −1

which corresponds to the identity γ2 = 1 on the 4 sites
of interests on the fermionic side.

As mentioned earlier, there is a nice physical
interpretation of the plaquette constraint: the only states
that satisfy it are loop gas states. The key to representing
the JW string in higher-dimension is that we restrict our
attention to loop gas states. That’s because given a loop
gas state, any open string (that corresponds to a JW
string) linking between two sites can be straightened to
the shortest-distance (i.e. taunt) string that link between
two sites. So we can always make a slack, non-local string
into a taunt string, such that the extent of the JW string
(on the bosonic side) can always be made to be within
the support of the hopping term (on the fermionic side).
Locality is thus preserved.

D. Sanity-check: Hilbert space dimension

Let’s do a careful checking of the dimension of the
Hilbert space on both sides of the higher-dimensional JW
transformation. Let there be L2 sites in the square lattice
(thus there are L2 plaquettes).

The origin Hilbert space is a spinful electron, so the
dimension of the singlet-site Hilbert space is 4: two
from the occupancy number of the site (n = 0, 1), and
two from the spin degree of freedom (s =↑, ↓). So the
dimension of the physical fermionic Hilbert space is 4L2.

On the bosonic side, we started out with a 24 = 16
dimenisonal parton Hilbert space for each site, since
we have 4 different types of partons: u, d, c, h, and
each is a fermion that contributes 2 dimensions to
the Hilbert space. So the initial parton Hilbert space
dimension is 16L2. We restrict ourselves to the Γ−

eigensubspace (at each site) in order to preserve the
fermion anticommutation relation. This reduce the
dimension of the Hilbert space to 8L2.

Then, when linking different lattice site, we further
impose the plaquette constraint, requiring that all
plaquettes (and henceforth all closed loops) operators
evaluate to identity. One need to be careful in counting
the number of independent plaquette constraints. Notice
that the product of all plaquette gives the identity, so
there are in fact only L2 − 1 independent plaquette
constraints! This halves the Hilbert space of each site
except for one, giving the dimension to be 4(L2 −
1) × 8. Then we note that since we impose periodic
boundary condition on the square lattice, the system
is actually on a torus. There are two non-contractible
loops along the torus that give two additional constraints,
reducing the dimension of Hilbert space to 4L2/2! This
seem to restrict the Hilbert space too much, but we
recognize that fixing both of the non-contractible loops
actually also fixes the physical fermion parity, so it makes
sense we only get half of the physical fermion Hilbert
space. We get the other half by another choice of the
non-contractible loop constraint, which correspond to the
other physical fermion parity sector.

V. DISCUSSIONS

In conclusion, I have reviewed the general procedure
of constructing the Jordan-Wigner transformation for
any fermionic Hamiltonian on a 2D square lattice.
The advantage of the above JW procedure is that
symmetries are manifest on the bosonic side after
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the mapping. An important application of higher
dimensional JW transformation is for simulating generic
fermionic problems which can have sign problems. Sign
problem renders fermionic systems impossible to be
simulated using Monte Carlo algorithms; however, by
applying the JordanWigner transformation, one can map
the fermionic problem to the corresponding bosonic spin
problem, which can be simulated using the wide variety
of algorithms available for bosonic systems.

For more details, Ref. [6] discuss concrete examples of
JW transformation on interacting fermionic Hamiltonian

to their bosonic analog. Ref. [7] discuss a slight
generalization where the procedure can be applied to any
lattice with an even coordination number.
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