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We study the concept of the self-organized criticality (SOC) and its application to a wide range
of scientific problems with very different backgrounds. In particular, we discuss the Bak-Tang-
Wiesenfeld sandpile model which displays SOC behavior and by computing the critical exponent
for the two-dimensional model we find the agreement with the known result. Finally, we provide
a new example of Zipf’s law and discuss the connection of power-laws found in nature to the SOC
phenomenon.

PACS numbers:

I. INTRODUCTION

The discovery of the self-organized criticality (SOC)
is one of ground-breaking achievements of statistical
physics in the last couple of decades. Self-organized crit-
icality is a very rich phenomenon as it combines self-
organization and criticality to describe complexity. This
concept was first introduced by P. Bak and the collabora-
tors in the seminal paper in 1987[1]. SOC is a property of
dynamical systems to organize its microscopic behavior
to be spatial (and/or temporal) scale independent. That
resembles of the critical behavior of the critical point
of phase transitions. However, in contrast to the usual
phase transitions, the systems displaying SOC do not re-
quire external tuning of the control parameters, i.e. the
system evolutions, i.e. organizes itself into the critical
behavior.

Thus, the dynamical system organizes itself into a state
with complex, but rather general structure. Complexity
arises in the sense that no single characteristic event size
exists, i.e. no scale present to guide the system’s evo-
lution. Despite the complexity, system exhibits simple
statistical properties governed by power laws. For exam-
ple, the number of events D as a function of its size s
(where a big event is less likely to happen compared to a
smaller one) is given by,

D(s) = As−α, (1)

where A is some constant and α is the exponent describ-
ing statistical features of a SOC state. Remarkably, some
of the exponents α can be same for systems with very dif-
ferent microscopic description.

SOC is typically observed in slowly-driven non-
equilibrium systems with extended degrees of freedom
and a high level of non-linearity. Many individual ex-
amples have been identified since Bak’s original paper,
but to date there is no known set of general characteris-
tics that guarantee a system to display SOC. Phenomena
of strikingly different backgrounds were claimed to ex-
hibit SOC behavior: sandpiles, earthquakes, forest fires,
rivers, mountains, cities, literary texts, electric break-
down, motion of magnetic flux lines in superconductors,
water droplets on surfaces, dynamics of magnetic do-
mains, growing surfaces, human brains, etc.[2]. The com-

mon feature for all mentioned systems is that the tem-
poral and/or spatial power-law correlations extend over
several decades where intuitively one may anticipate that
the physical laws would vary dramatically.

Empirical observations of power-law distributions of
spatially-extended objects have triggered a need for
a theoretical explanation. Unfortunately, no unifying
mathematical formalism has been elaborated so far and
it appears unclear how to identify whether a given sys-
tem displays SOC behavior or it is something different.
Even worse, there exists no generally accepted definition
of SOC.

Fortunately, there exist a few mathematical mod-
els which seem to display SOC behavior: Bak-Tang-
Wiesenfeld sandpile, Olami-Feder-Christensen earth-
quake model, Lattice Gas model, Critical Forest Fire
model, etc. In the present work we describe the original
BTW sandpile model which is the first discovered exam-
ple of a dynamical system displaying SOC[1]. We per-
form computations for the two-dimensional model using
parameters different from the original one. We obtain an
exponent which is in a good agreement with the known
one, thus again indicating that SOC state is achieved
without any need of parameters tuning.

Next, we find another system exhibiting power-law
statistical properties. It appears, that distribution of
skyscrapers heights obeys power-law. Finally, we discuss
the open question which systems exhibiting power-law
characteristics can be considered to exhibit SOC behav-
ior.

II. BAK-TANG-WIESENFELD SANDPILE
MODEL

Consider a flat table of finite size with one grain of
sand added per unit time interval so that the system has
enough time to equilibrate before the next grain drops
down. The grains can be added either randomly or at
some fixed position of the table. As a result of friction
between the grains the system does not automatically
equilibrate to a ground state of flat height profile. Ini-
tially, the grains are most likely to stay at the same places
where they landed, however as we carry on adding more
sand, the height profile becomes steeper and small sand
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slides or avalanches can occur. If the grain lands on top
of other grain it may topple to a lower level overcoming
friction due to gravity. This toppling causes local dis-
turbance which does not affect the large-scale picture,
i.e. there are no correlations between distant parts of the
sandpile. However, as the slope increases, a single grain
is more likely to cause other grains to topple and eventu-
ally the slope reaches a certain maximal value when the
amounts of sand being added and falling off the edges
are balanced. Clearly, now the local dynamics no longer
governs the process and the avalanches span the entire
system leading to complexity. This is the SOC state with
its own complex emergent dynamics which cannot be de-
scribed by local dynamics laws. That is why it is natural
to expect that SOC state is robust to the modifications
of the systems, which is the crucial requirement for SOC
to describe real world. For example, by changing the size
of our system (as long as it still stays large), by adding
different barriers on the table, by adding some amount
of wet sand, the critical state dynamics stays exactly the
same. That has been demonstrated on the example of
the Bak-Tang-Wiesenfeld (BTW) sandpile model.

To show how the BTW sandpile model works, we con-
sider a 2D flat surface defined by z(x, y) = 0 for all x
and y (again, this initial condition does not affect final
self-organized critical behavior) and start adding a grain
of sand at a random position (x, y):

z(x, y)→ z(x, y) + 1. (2)

If the number of grains z(x, y) on a given site becomes
larger than the critical value zcr then there is a redis-
tribution of grains between neighbouring cells, i.e. an
avalanche:

z(x, y)→ z(x, y)− 4,

z(x± 1, y)→ z(x± 1, y) + 1,

z(x, y ± 1)→ z(x, y ± 1) + 1.

(3)

It is straightforward to apply the same logic to d-
dimensions where the critical site redistributes 2d grains
among its neighbours. One can also think of making
grains redistribution from the critical cell to be between
second-nearest neighbours, be anisotropic, etc. Eventu-
ally, all these modifications do not affect avalanche dis-
tributions.

The toppling process desribed above for 2D is illus-
trated in Fig.1. By adding a grain to a central site we
cause an avalanche of size s = 9. When the edge cell
becomes critical some grains fall off the grid and are not
involved in the further dynamics. Overall, as a result
of the avalanche depicted in Fig.1, the system loses, i.e.
dissipates, 5 grains.

Thus, defining simple local dynamics we end up with a
slowly-driven non-equilibrium system with extended de-
grees of freedom (i.e. grains of sand), a high-level of
non-linearity and, finally, energy dissipation.

We applied the outlined BTW model to study 2D prob-
lem. Figure 2 illustrates the obtained probability distri-
bution D(s) of an avalanche as a function of its size.

FIG. 1: Ilustration of toppling avalanche in a small 5 × 5
sandpile. A grain falling at the site with Zcr = 3 grains on
it at the center of the grid triggers an avalanche with size of
nine toppling events, i.e. s = 9. As a result of the avalanche,
the system loses 5 grains of sand.

We used parameters different from the original paper by
having taken 40 × 40 grid and averaged over 20 sam-
ples with total of N = 5 × 105 grains added to each
sample. By interpolating the statistical data we obtain
the power-law distribution Eq.(1) with A = 0.083 and
α = 1.098 which is in a very good agreement with the
original results[1]. Thus, parameters do not affect the ex-
ponent and there is no scale in the system, which are the
key feature of systems displaying SOC behavior. Thus,
the BTW model transparently shows how simple local
interactions can lead to a complexity with transparent
mechanisms of energy dissipation and input.

The exponent we have obtained by counting s after
each grain added does not take into account other two
important properties of an avalanche: the lifetime and
the linear size. Generally, one can use hyperscaling hy-
pothesis to obtain other exponents for the probability
density of linear sizes, D(l), as well as for the proba-
bility density of lifetimes, D(t). Importantly, the set of
the exponents will in general depend on the dimension
d. However, as it turns out, using numerical computa-
tion it has been showed that for d > dc = 4 the expo-
nents become d-independent[2]. Thus, it indicates that
the critical dimension is 4, above which the mean field
value for the exponents is valid. For example, the mean-
field value for α is 1.5 compared to 1.1 and 1.3 for two-
and three-dimensional BTW models respectively.

III. SKYSCRAPERS HEIGHT DISTRIBUTION:
ZIPF’S LAW AND SELF-ORGANIZED

CRITICALITY CONNECTION

About 60 years ago G. K. Zipf showed that
many human-related systems display power-law
distributions[4]. For example, the distribution of
cities by their size can be well fitted by the power-law.
Many other geographical systems obey power-law dis-
tribution, such as mountains, rivers (Horton-Strahler
law), etc. Furthermore, Zipf also analysed many literary
texts (no matter either it was a solid book or a stack
of newspapers) by counting the most frequent words
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FIG. 2: Distribution of avalanche sizes D(s) as a function of
the size s. The data points correspond to an average over 20
samples of 40×40 grids with N = 5×105 grains added to each.
The power-law distribution has the exponent α = 1.098. By
taking a larger N we can increase the range where the fitting
function works well, what was checked for one sample with
N = 2 × 106.

used in it and plotted the frequency given word was
used as a function of the word’s rank. A power-law
regularity was observed for many literary texts with
diverse backgrounds. This is similar to the distribution
of earthquakes and the empirical Gutenberg-Richter
law, although, clearly the phenomena described are just
absolutely different.

Here we provide a new example of such a power-law
distribution found in the real world: Fig.3 displays the
height H distribution of the skyscrapers as a function
of skyscraper’s rank (data used from Ref.[5]). By fitting
the data points with Eq.(1) we obtain A = 2676ft, and
α = 0.22. Clearly, this power-law distribution will have
a lower boundary cut-off.

Of course, the skyscrapers construction is an extremely
complex system with a dramatically large degrees of free-
dom. Moreover, a very large number of external tech-
nological and economic factors influence the probability
of constructing a skyscraper of a given height. Thus,
one can hardly think of a mathematical formalism which
could describe such a complex problem. Moreover, it ap-
pears to be impossible to change the parameters of the
problem and see if the power-law distribution exhibits
the same exponent. This problem is general for many
other systems that obey Zipf’s law and the border be-
tween the SOC behavior and other explanations is very
blurry. Per Bak tends to link any power law that occurs
in a potentially self-organizing system with the principle
of SOC[3]. Of course, one can think of strong local dy-
namics interactions between people which results in such
global avalanche effect as large city creation (in analogy
to BTW sandpile model), however as long as no persua-
sive models of self-organized criticality for Zipf’s laws are
constructed, the question remains open.
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FIG. 3: Ranking of skyscrapers by height. The curve shows
the number of skyscrapers which exceed a given height, or
equivalently, the relative ranking of skyscrapers versus their
height. The fitted power-law distribution has exponent α =
0.22.

A relatively recent study specifically discusses the re-
lation of scaling laws and indication of SOC in urban
systems [6]. The conclusion the authors reach is that the
urban systems display three spatial and temporal SOC
signs. For example, for cities these three SOC indications
are the number law, the population size law, and the area
law. However, it is difficult to judge either the system of
interest exhibits SOC or not, but, perhaps, more impor-
tantly is to reveal that both physical and human systems
conform to the same mathematical rules.

Here we would like to mention that in contrast to the
BTW model with simple local interactions, literary texts
(which obey Zipf’s law) have complicated non-local corre-
lations. In our previous work we showed that the theory
of additive Markov chains with long-range memory can
be used to describe the correlation properties of literary
texts[7]. By studying the coarse grained literary texts we
concluded that their organization is complex due to long-
range memory, in contrast to the BTW model where local
correlations lead to complexity. That can be explained by
the existence of both short- and long-range correlations,
where the former one can be referred to as the grammat-
ical one, whereas the latter kind of correlations may be
semantic, i.e. due to a general idea spanning the whole
text. Thus, non-local correlations can also play an im-
portant role in systems which obey power-law statistics
and claimed to exhibit SOC behavior.

Fortunately, despite no agreement exists today about
the way to define either the system is in SOC state or not,
the renormalization group tools seem to be a fair judge
for mathematical models exhibiting SOC. The RG analy-
sis of sandpile-like model found an attractive fixed point,
thus fulfilling the SOC demand for scale-invariance and
irrelevance of tuning parameters. In contrast to that,
the RG analysis of the Critical Forest Fire model has
found a repulsive fixed point, what means that there is
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a specific scale in the system. That has been explained
by another demand for threshold for SOC state to occur:
there must be a large number of static metastable config-
urations, what is not the case for the Critical Forest Fire
model. It has been concluded, that the existence of local
thresholds is a necessary, but not a sufficient, condition
for SOC.

IV. CONCLUSIONS

In the present work we have reviewed the concept
of self-organized criticality which describes a complex
self-organized state of a system with general, spatially-
and/or temporally-independent, i.e. scale-free, charac-
teristic behavior. We have also described the Bak-Tank-
Weisenfel sandpile model which was the first dynamical
system to exhibit SOC. We have carried out the compu-
tations for BTW model with parameters different from

those used in the original paper and obtained the same
power-law distributions for 2D case, what is in agree-
ment with the idea of scale-invariance of SOC state. Fi-
nally, we review Zipf’s law and provide a new example of
skyscraper’s height distribution which obeys the power-
law statistics. Finally, we discuss the connection between
Zipf’s law and SOC and find that there is no agreement
reached so far whether power law distributions found in
nature are related to SOC or not. That is a direct conse-
quence of SOC to be rather phenomenological, than con-
structive definition. We mention, that models with local
interactions (such as BTW) as well as models with non-
local (literary texts) correlations may lead to power-law
distributions. Eventually, we briefly discuss the results
of RG analysis applied to some models: the mathemati-
cal model (or real system) must allow for a large number
of metastable states to exist to be a candidate for SOC
behavior.
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