8.02X Electricity and Magnetism

Quiz #3 Solutions

Monday, April 11

TOTAL

10:05-10:55am

Room 26-100

The quiz has four questions. It is a closed book quiz. No calculators are allowed. A letter-size formula sheet can be used, but has to be signed and submitted together with the quiz.

	NAME		
FIRST	NAME		
MIT II)#		
	<u> </u>		
	RECITATION	ON SECTION	
	1		<u> </u>
D 0.1	D. 433771 1		MARK YOURS
	MW11	B. Zeng	MARK YOURS
Rec02	MW12	B. Zeng B. Zeng	MARK YOURS
Rec02 Rec03	MW12 MW1	B. Zeng B. Zeng D. Nagaj	MARK YOURS
Rec02 Rec03 Rec04	MW12 MW1 TR11	B. Zeng B. Zeng D. Nagaj G. Benedek	MARK YOURS
Rec02 Rec03 Rec04 Rec05	MW12 MW1 TR11 TR1	B. Zeng B. Zeng D. Nagaj G. Benedek G. Benedek	MARK YOURS
Rec01 Rec02 Rec03 Rec04 Rec05 Rec06 Rec07	MW12 MW1 TR11	B. Zeng B. Zeng D. Nagaj G. Benedek	MARK YOURS
Rec02 Rec03 Rec04 Rec05 Rec06 Rec07	MW12 MW1 TR11 TR1 TR2 TR3	B. Zeng B. Zeng D. Nagaj G. Benedek G. Benedek G. Benedek	MARK YOURS
Rec02 Rec03 Rec04 Rec05 Rec06 Rec07	MW12 MW1 TR11 TR1 TR2 TR3	B. Zeng B. Zeng D. Nagaj G. Benedek G. Benedek G. Benedek	MARK YOURS
Rec02 Rec03 Rec04 Rec05 Rec06	MW12 MW1 TR11 TR1 TR2 TR3	B. Zeng B. Zeng D. Nagaj G. Benedek G. Benedek G. Benedek	MARK YOURS

SI

Problem 1 (26 points) Experiment EB

Suppose that experiment EB is performed with a gas that has an ionization potential of V_{ion} = 10V. For a gap of d=0.1mm you observe electric breakdown at a voltage difference across the spark gap of V_{gap} = 1000V.

(a) What is the mean free path of the electrons in the gas?

$$\frac{V_{10N}}{\lambda_{mfp}} = \frac{V_{gep}}{d} \frac{6lc}{d} \frac{q}{\lambda_{mfp}} \frac{V_{gap}}{\sqrt{d}} > q. V_{10N}$$

$$=) \frac{10V}{\lambda_{mfp}} = \frac{1000V}{10^{-4}m} = \lambda_{mfp} = 10^{-6}m = 1 \mu m$$

Assume the experiment was repeated using the same gas and the same gap d = 0.1mm, but in an enclosure with only half the pressure and therefore only half the density of molecules? At which voltage would breakdown occur under these conditions? Explain your answer in a few sentences.

The Lower donsity allows electrons to travel farther before hitting a molecule. Therefore the field necessary for them to pich up enough energy to ionize molecules can be lower. For the same d, that means smaller Vapp.

Problem 2 (25 points)

5

Shown below is the cross-section of a long solenoid with length L and number of windings N. The solenoid carries a current I.

- (a) Using fieldlines, sketch the magnetic field created by the solenoid.
- (b) Using Ampere's Law and symmetry arguments, derive an expression for the magnitude of the magnetic field at the center (X_0) of the solenoid. Show work!
 - (c) Assume an identical solenoid was placed in close proximity to the first one, to the right of the first solenoid, carrying the same current I in the same direction. How big would the field at point x_1 be then? $\nearrow B = \emptyset$

Problem 3 (25 points)

Shown below is a square conducting loop. The <u>loop is not</u> movable. The sides of the loop have length 1m. The right half of the loop is inside a uniform external magnetic field, which points out of the paper plane. The resistance of the loop is 1 Ohm.

- (a) At time t=0, the magnitude of the field is B=2T. What is the magnitude of the magnetic flux through the loop at this time?

 □ = B · A = 2T × 0.5 m² = | Tm² = | ₩6
- (b) Starting at time t=1 sec, the field is ramped from B=2T to B=0 over the course of 1 sec with a constant rate. What is the magnitude of the induced EMF at t=1.5 sec during the ramp. Show work! Because the change is linear, we can take the after the flux changes from Tim² to 0 Tim² in 1s, so E = the at = (-1 Tim²): IV
- (c) What is the direction and magnitude of the induced current at t=1.5 sec? The flux O decreases, so the induced field wants to increase it. Therefore

 Bind is O and the current is controlled. I = \(\frac{\xi}{\R} = \frac{1V}{1\R} = \frac{1}{4} \)
- (d) What is the direction and magnitude of the net magnetic force on the loop at t=1.5 sec?

 The Arees on the top be bottom cancelout, the only force left is \$\overline{1}_3 = \overline{1}_3 \overline{1}_5 = \overline{1}_5 \overline{1}_5 = \overline{1}_5

= (IT).(In).(Im) = IN

Magnetic Field, pointing 5pts

out of paper plane

Problem 4 (25 points)

Shown below is the cross-section of a parallel plate capacitor carrying a charge +Q (top) and -Q (bottom). The potential difference between the plates is ΔV , the plates are separated by a distance d.

An electron with charge $e = -1.6 \cdot 10^{-19}$ C and velocity v is entering the capacitor from the left.

- (a) On the figure, show the direction of the electric field in the capacitor.
- (b) What direction should an external magnetic field have, such that the electron is not deflected inside the capacitor? Since e < 0, the electric force $F_E = eE = |eE| \hat{y}$ therefore the magnetic force must be in $-\hat{y}$ direction: $F_B = e\vec{v} \times \vec{B} = -|e||v|| \implies \hat{x} \times \hat{B} \propto -\hat{y} \implies \hat{x} \times \vec{B} \propto \hat{y}$ (c) What should the magnitude of the field be in terms of the $\Rightarrow \vec{B} = |B|(-\hat{s})$
- (c) What should the magnitude of the field be in terms of the $\Rightarrow \vec{\beta} = |\vec{\alpha}|(-\hat{s})$ quantities given, such that the electron is not deflected as shown in figure inside the capacitor? Show work!

nside the capacitor? Show work!

Sina
$$\overrightarrow{V}$$
, \overrightarrow{FE} , \overrightarrow{FB} are perpendicular to each other:

$$\overrightarrow{Ftotal} = \mathbf{E} \begin{bmatrix} \overrightarrow{FE} + \overrightarrow{V} \times \overrightarrow{B} \end{bmatrix} = 0 \implies \overrightarrow{E} = -\overrightarrow{V} \times \overrightarrow{B}$$

$$\Rightarrow |E| = |VB| \implies |B| = |E| = |V| \text{ Note } |E| = |E|$$

$$\Rightarrow |B| = |A| = |B| =$$

